Programming Abstractions and Synthesis-Aided Compilation for Emerging
Computing Platforms

by
Phitchaya Phothilimthana
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Rastislav Bodik, Co-chair
Professor Katherine Yelick, Co-chair
Professor David Culler
Assistant Professor Zachary Pardos

Fall 2018

Programming Abstractions and Synthesis-Aided Compilation for Emerging
Computing Platforms

Copyright 2018
by
Phitchaya Phothilimthana

Abstract

Programming Abstractions and Synthesis-Aided Compilation for Emerging Computing
Platforms

by
Phitchaya Phothilimthana
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Rastislav Bodik, Co-chair

Professor Katherine Yelick, Co-chair

Today’s cutting-edge applications, ranging from wearable devices and embedded medi-
cal sensors to high-performance data centers, put new demands on computer architectures.
Those demands include more computation capability, a tight power budget, low latency,
high throughput, and many more. To meet these requirements, specialized architectures
with low energy consumption are becoming more prevalent. Many of these architectures
trade off programmability features for gains in energy efficiency and performance. Hence,
programmability challenges are inevitable as applications continue to evolve and make new
demands on computing architectures.

I propose key principles for improving programmability intended for application writers
as well as compiler developers and language designers. First, I address programmability
issues by providing a programming model that hides low-level details but sufficiently ex-
poses essential details for application writers to control. Second, to compile and optimize
programs, I apply a new compilation methodology based on synthesis. Unlike a classical
compiler’s transformation, synthesis obtains a correct and optimal solution by searching for
an optimal candidate that is semantically equivalent to a specification program. This search
helps compilers generate efficient code without deriving a program via a sequence of trans-
formations, which are challenging for compiler developers to design for new unconventional
architectures.

In this thesis, I demonstrate the key principles in three projects: CHLOROPHYLL, a
language and compiler for low-power spatial architectures; FLOEM, a programming system
for NIC-accelerated data center applications; and GREENTHUMB, a framework for building
a superoptimizer (an assembly program optimizer based on synthesis).

To my family.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Programmability Challenges
Compilation Approaches oL
Thesis and Goals
Concept I: Programming Model
Concept II: Synthesis-Aided Compilation
Summary of Contributionso

2 Chlorophyll: Programming Spatial Architectures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29

Contributions and Rationale
Overview
Programming Model for Partitioning
Synthesis-Aided Compiler
Toolchain and Debugger
Evaluation
Extensive Case Study
Related Work
Conclusion

3 Floem: Programming NIC-Accelerated Applications

3.1
3.2
3.3
3.4
3.5
3.6

Contributions
Design Goals and Rationale
Core Abstractions
Advanced Abstractions
Compiler
PCle I/O Communication

i

il

3.7 Evaluation 87
3.8 Discussion and Future Work L 95
3.9 Related Work 96
3.10 Conclusions e 97
4 GreenThumb: Superoptimization Framework 98
4.1 Motivation L 98
4.2 Contributions L 99
4.3 Overview of Search Strategy and Insights 100
4.4 The LENS Algorithm 106
4.5 Context-Aware Window Decomposition 111
4.6 Cooperative Superoptimizer 112
4.7 Superoptimization Construction Framework 114
4.8 Evaluation 116
4.9 Related Work 124
4.10 Conclusion 125
5 Toward Resource-Mapping Framework 127
5.1 OVerview e 127
5.2 Library 127
5.3 Case Study: Program Partitioning 129
54 Future Work 133
6 Conclusion and Future Work 134
6.1 Trends in Emerging Computing Platforms 135
6.2 Trends in Compilation 135
6.3 Lessons Learned and Thoughts for the Future 136

Bibliography 138

List of Figures

0.1

1.1
1.2

1.3

2.1

2.2
2.3

24
2.5
2.6

2.7
2.8
2.9

2.10

2.11
2.12
2.13
2.14
2.15

Bodik’s research group in 2012-2018

Comparison of different compilation techniques
Instantiation of the key concepts in the thesis, centering around exploiting an
emerging computer architecture for performance and energy efficiency.
Decomposition of the CHLOROPHYLL compiler. Synthesis components are high-
lighted in blue.

Example program written in CHLOROPHYLL, and intermediate results from par-
titioning, layout, and code separation steps
A simplified example program taken from the gesture recognition application . .
Program fragments of partitions 22, 23, and 13 generated by the compiler when
compiling the program in Figure 2.2. The compiler places blue, pink, and purple
highlighted data and computations from Figure 2.2(a) in partitions 22, 23, and
13 respectively. N, S, E, and W stand for north, south, east, and west ports.

Typing rules
Example of a parallel HMM classification program using the module construct .
Evaluation rules for an upper bound on the number of communications. lut is
the function table. [ut[f] < n is storing n at index f of the lookup table.
Overview of the modular superoptimizer
Specification on data stacko
Basic specification rejects an instruction sequence that leaves a at the bottom of
the stack.
Execution time of multicore benchmarks normalized to program generated by the
complete synthesizing compilero
Single-core benchmarks
Bithack benchmarks
FIR benchmark
Accelerometer-based gesture recognition algorithm
Program layout for the gesture recognition application. Each core is labeled with
three digits. The first digit indicates the x-coordinate. The last two digits indicate
the y-coordinate. Orange highlights cores that are actors.

v

el

15
21

22
24
26

3.1
3.2

3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10
3.11
3.12
3.13

3.14

3.15
3.16

3.17

4.1
4.2

4.3

4.4

4.5

Several offloading strategies of a key-value store implemented in FLOEM 65
FLOEM program implementing a sharded key-value store with the CPU-NIC split

strategy of Figure 3.1(b) 68
Inconsistency of a write-back cache if messages from NIC to CPU are reordered 69
FLOEM system architecture oo 72
The key-value store’s data-flow subgraph in the proximity of queue Q1 from the

split CPU-NIC version o 73
Cache expansion ruleso 74

Provided API functions by different components. A ENY:! represents: A provides
function f for Btouse. 76
Interaction between NIC runtime manager thread, NIC worker thread, CPU
workder thread, and status of a queue entry. Red highlights functions provided
by the queue library. Blue highlights functions provided by the queue synchro-
nization layer. enq and deq are abbreviations for enqueue and dequeue respectively. 78

Example application pseudocode 79
Pseudocode of CPU queue implementation, and NIC queue implementation . . . 80
Pseudocode of the queue synchronization layer 81
Queue entry’s state machine oL 85

States of different portions in a queue. Pointers always advance to the right and
wrap around. Each portion contains zero or more queue entries. A timeline of a
queue entry is depicted in Figure 3.8(b). oL 85
Throughput per CPU core of different implementations of the key-value store.
WB = write-back, WT = write-through. #N in “cache-WB-#N" is the config-
uration number. Table 3.2 shows the cache sizes of the different configurations
and their resulting hit rates.o oo oo 88
Throughput per CPU core of different Storm implementations 91
Throughput of AES encryption, 3DES encryption, flow classification, and network
sequencer running on one CPU core and the LiquidlO NIC. ‘CPU-AES-NT’ is

running on one CPU core with AES-NI. 92
Effect of the queue synchronization layer. Throughput is normalized to that

without the sync layer. 94
Interaction between the main components in our superoptimizer 101

Search graphs of ARM programs of length 4. In (b) and (c), the highlighted paths
are programs that pass the test cases. Assume programs are executed on 4-bit

machine. L 102
Division of search space of length d programs. Yellow boxes represent feasible
equivalence classes. 103

Optimizing a sequence of GA instructions from a SHA-256 program. ‘stoch_s’ is
stochastic search that starts from random programs. ‘stoch_o’ is stochastic search
that starts from the correct reference program. 105
Major components in GREENTHUMB 114

4.6
4.7

4.8

5.1
5.2
9.3
5.4

5.5

Comparing base search techniques
Costs of best programs found by the different superoptimizers (normalized by
the cost of the best known program). A dash represents the cost of the best
program found in one run. A dash may represent more than one run if the best
programs found in different runs have the same cost. If one or two runs did not
find any correct program that is better than the input program, the vertical line
is extended past the chart. If none of the runs found a correct program that is
better than the input program, a rectangle is placed at the top of of the chart.
Optimizations that the cooperative superoptimizer discovered when optimizing
mi-bitarray benchmark. Blue highlights the difference between before and after
each optimization. (a) is the original program. (b) is the intermediate program.
(c) is the final optimized program. L.

Original type checker, ensuring that code fragments fit into cores
Type checker in resource language, producing ILP constraints
Running example of program partitioning
Symbolic expression of space occupied in each core after running a type checker
on the yellow nodes in the example AST (Figure 5.3(a))
Time to solve program partitioning

vi

120

List of Tables

2.1

2.2

2.3
24
2.5

3.1

3.2

3.3

3.4

4.1

Superoptimization time (in hours) and program length (in words) for single-core
benchmarks. A word in program sequences contains either four instructions or a
constant literal. *Bithack-3 takes 25.08 hours when the program fragment length
is capped at 30 instructions. With the default length (16 instructions), it takes
2.5 hours. ...
Compile time of multicore benchmarks. Time is in seconds except for superopti-
mization time, which is in hours. The compiler runs on an 8-core machine, so it
superoptimizes up to eight independent instances in parallel. Layout time only
depends on the number of given GA cores. Heuristic partitioning takes less than
one second to generate a solution. Lo
Total execution time and energy consumption per one round of classification

Energy consumption per each task per one round of classification

Size of generated code. Each core can store up to 64 words of data and program.

Effort to implement key-value store. The last column describes specific modifica-
tion details other than creating, modifying, and rewiring elements. As a baseline,
code relevant to communication on the CPU side alone was 240 lines in a manual
C implementation.
The sizes of the cache (# of buckets and # of entries per bucket) on the NIC and
the resulting cache hit rates when using the cache for the key-value store. All
columns report the hit rates when using write-back policy except the last column
for write-through. oo entries mean a linked list.
Effort to implement Storm. The last column describes specific modification de-
tails other than creating, modifying, and rewiring elements.
Speedup when sending only the live portions when varying live ratios from a
micro-benchmark. Sizes are in bytes (B).o 0L

The differences between non-context-aware and context-aware decomposition. p
is a candidate program. i, is the input counterexample returned by the constraint
solver if the candidate program is not equivalent to the reference program.

vil

20

o6

112

4.2

4.3

5.1

5.2

viil

Median time in seconds to reach best known programs. “-” indicates that the
superoptimizer failed to find a best known program in one or more runs. Bold
denotes the fastest superoptimizer to find a best known program in each benchmark.120
Execution time speedup over gcc -03 code and search instances involved in
finding the solution. In the last column, X — Y indicates that Y uses the best
code found by X. x indicates exchanging of the best code among search instances
of the same search technique., 122

Description of resource language operations. Sym/conc stands for symbolic or
CONCTELE. o o e e e 128
Implementation of resource language operations. sum' and offset’ are temporary
variables. L L 129

X

Acknowledgments

I would like to give acknowledgments in chronological order through the journey of my
life and this thesis.

I was born to the Phothilimthana family. [am eternally grateful for unconditional
love from my parents and sister. I thank them for teaching me to always have faith in myself
and believe that I can do whatever I wish and work toward. I thank them for raising me to
be me today.

In 2004, I was introduced to programming in the required programming course
during my first year of high school at Mahidol Wittayanusorn School. Mahidol
Wittayanusorn School is the best high school in Thailand, in my opinion of course. I thank
all my teachers and the school for taking me to the beginning of my exciting career path in
computer science.

In 2006, I represented Thailand at International Olympiad in Informatics (IOI)
and thus received a scholarship from the Thai government to study abroad.
Thanks to all the organizers of the programming camps, especially to Jittat Fakcharoenphol,
for making me discover the joy of solving programming problems through my path to IOI. I
am grateful to the Thai government for giving me an amazing opportunity to study at the
top university in the world.

In 2010, friends convinced me to take the 6.035 compiler class at MIT taught by
Saman Amarasinghe. I later joined his research group. I never thought that I would
ever take a compiler class, but I did only because of my friends, Yod Watanaprakornkul and
Melissa Gymrek. I thank them for convincing me to take this class. Then, Saman asked
me to join his research group after I took his class. 1 accepted this great offer, and I have
been doing compiler research ever since. I would like to thank Saman for introducing me to
compilers and research and for giving career advice. I also thank Jason Ansel, my graduate
student mentor, who advised me through my first published project at MIT, and for all his
support as my friend and husband.

In 2012, T met my Ph.D. advisor, Ras Bodik. I first met Ras during the visit days,
and I instantly felt his enthusiasm and love in research. He introduced me to GreenArrays,
my then future-to-be research project, even before I decided to join Berkeley. After working
with Ras for six years, I can say that I could not have asked for a better advisor. Ras pushed
me for the better, but at the same time cared for my well-being. Ras liked to ask for many
revisions for that perfect presentation and paper’s introduction and overview. He sometimes
“twisted” my arm to make cool demos, like running applications using a lemon or potato
battery! Although they were a lot more work than I signed up for, I am grateful for such

advice, which certainly made my work ten-times cooler and more exciting. I am genuinely
thankful for all the guidance and lengthy discussions during our weekly meetings that always
ran late.

Shortly, I joined the Berkeley Computer Science Ph.D. program. Apart from
having a great advisor, I also had an awesome, supportive research group. Thanks to Leo
Meyerovich, Joel Galenson, Thibaud Hottelier, Shaon Barman, Ali Koksal, Sarah Chasins,
Julie Newcomb, Sam Elliott, Sam Kaufman, Chenglong Wang, and Rohin Shah. They
showed me how to have fun and be happy in grad school. I enjoyed all our conversations
over daily lunch from the co-op living situation to a serious grad school business. Special
thanks to Sarah Chasins, my academic twin, who is the most caring and supportive grad
student friend I have. As a token of appreciation, I dedicate the illustration in Figure 0.1
to the group. Also, many thanks to my sweet grad student fellows, Penporn Koanantakool
and Neeraja Yadwadkar, for listening, sharing, and fun hangouts. Thanks to everyone in
Chaperone, the Berkeley PL research lab.

In 2015, here came the surprise. Ras moved to the University of Washington, so
I asked Kathy Yelick to be my co-advisor. [am grateful to Kathy for making sure I
was doing okay when I worked remotely with Ras. I am also thankful for her feedback on
writing and presentation for my qualifying examination and this thesis.

In 2016, I moved to the University of Washington as a visiting student. Shoutouts
to PLSE and SAMPA labs for the fun and lively research environment at UW.

In 2018, my ultimate frisbee team got the third place from Masters Women’s
Nationals Championship. A big part of my grad student’s life apart from research is
playing ultimate frisbee. I am grateful to the ultimate frisbee community for the welcoming,
inclusive environment and the fun breaks from research.

Finally, I filed this thesis. To all my collaborators, Emina Torlak, Tikhon Jelvis, Rohin
Shah, Nishant Totla, Sarah Chasins, Michael Schuldt, Aditya Thakur, Dinakar Dhurjati,
Ming Liu, Antoine Kaufmann, Simon Peter, Tom Anderson, Greg Bailey, Charley Shattuck,
Per Ljung, Paulo Matos, and Vinod Grover, it has been a pleasure collaborating with you
all. Thank you for making these projects in my thesis possible. Thanks to the rest of
my dissertation committee members, David Culler and Zachary Pardos, for their insightful
feedback and suggestions. Last but not least, I appreciate the help from the Berkeley ParLab
and UW PLSE staff: Roxana Infante, Tamille Chouteau, Kostadin Ilov, Lydia Raya, and
Amanda Robles.

2012-201%

GROUT

Sam E.

Chenglong

ch group in 2012-2018

Figure 0.1: Bodik’s resear

Chapter 1

Introduction

Leading-edge applications, ranging from smart devices to high-performance data centers, put
new demands on computing hardware. These demands include more computation power,
low energy consumption, high performance, etc. To meet these requirements after the end
of Moore’s law, specialized architectures with low power are becoming more popular. These
architectures often sacrifice programmability features for gains in performance and energy
efficiency. Hence, programmability challenges are unavoidable as applications evolve and
make new demands on computing hardware.

1.1 Programmability Challenges

In this thesis, programmability challenges posed by recent emerging computer architectures
are categorized into three kinds, as follows.

Challenges due to specialization. Specialized architectures force programmers to rea-
son about their unconventional characteristics or control decisions that are not typically
made by programmers, resulting in new programming challenges.

Specialized processors for low-power, energy-efficient applications often have minimalistic
resources, such as narrow bitwidth, small memory, and simple interconnects. For example, T1
MSP430 ultra-low-power MCUs, widely used microcontrollers, have 16-bit words and contain
only up to 256 kilobytes of memory [75]. Atmel AVR, used in most Arduino boards, is even
more extreme, using only 8 bits per word [15, 109]. GreenArrays GA144, a highly energy-
efficient chip, has 300 bytes of memory per core and 18-bit words [65]. Narrow bitwidth
introduces more overflow and precision problems, forcing programmers to carefully manip-
ulate numbers in certain ways or use multiple words to represent a number that requires
high precision. At the same time, programmers have to make their programs and data fit
in tiny memory. Besides narrow bitwidth and small memory, some processors employ spa-
tial designs that reduce energy consumption by requiring software-managed communication
between computing elements with limited interconnects. GA144 has a simple 2D mesh inter-

CHAPTER 1. INTRODUCTION 2

connect of 144 asynchronous cores with no shared memory. This design allows a few small
cores to be active at a time, thus, consuming very little power overall. Furthermore, the
nonexistence of synchronized clock in GA144 is crucial to achieve ultra-low energy consump-
tion [30]. However, the spatial design forces programmer to partition programs and data
onto different locations (e.g., cores). This process is extremely challenging when each core
is minuscule.

Specialized hardware developed for accelerating applications in a specific domain also
exposes its own unique features. GPUs, originally designed for graphic computations, are
now used for accelerating applications from various domains — such as scientific computing,
data processing, and machine learning — thanks to its massive parallelism [110]. However,
GPU programmers must coordinate a massive number of threads to work collaboratively in
a SIMT style and manage scratchpad memory manually. Barefoot Tofino, a programmable
Ethernet switch, exposes its match-action computing stages to users and forces them to pro-
gram in a match-action programming paradigm [20]. The spatial design that is employed in
processor design for energy efficiency can also be used for performance. Spatial architectures
such as FPGAs and WaveFlow [45, 39] exploit data locality for low latency, and massive
pipeline parallelism in data-flow computation for high throughput.

Challenges due to heterogeneity. Heterogeneous computing refers to systems that use
more than one kind of processor [53, 110]. Heterogeneity in a system poses multiple new
challenges to programmers. The first challenge is dividing the workload among different
computing devices. This process is extremely difficult because programmers must under-
stand the tradeoffs between running different kinds of computation on different devices as
well as inter-device communication, which are expensive across devices. Second, after the
programmers decide how to partition an application across multiple devices, they have to
write multiple programs to run on those devices. Different hardware architectures often ac-
cept code written in different languages with different programming paradigms and require
different optimization tricks. If the programmers change how they partition the application,
they will need to modify programs running on all devices. Therefore, heterogeneous com-
puting demands a huge effort from programmers in order to explore a variation of workload
assignment.

Challenges due to performance understanding. New programming challenges also
arise from complicated performance characteristics of interacting components in the hard-
ware architectures. For example, GPU programmers must understand thread divergence,
memory coalescing, shared memory bank conflicts, and register spill in order to achieve
good performance on GPUs. Spatial architectures such as GA144, WaveFlow, and FPGAs
expose highly-variable latency for instruction operands, depending on the spatial distance
between the operands and the instructions. For heterogeneous computing, it is especially
hard to estimate the performance of an implementation accurately. A static performance
model is often imprecise because it abstracts away some complexity of the hardware model.

CHAPTER 1. INTRODUCTION 3

We can avoid a static approach by evaluating the performance of a task empirically, but we
still cannot simply assign a placement of a task in isolation because it interacts with other
parts of the application. Unfortunately, we often cannot afford to test all possible choices
considering the entire application because the space is too big. Therefore, there has been a
large body of work on automatically mapping a program to different hardware nodes [110],
but there is still no solution for all.

This thesis primarily addresses the challenges due to specialization and heterogeneity.
Some of the proposed methods, however, indirectly solve the last challenge by making it
easier to explore many implementations of programs.

1.2 Compilation Approaches

Programmability challenges can be solved by a programming model that has the right level
of abstraction for an application domain, together with a compiler that can lower a higher-
level program written by a programmer to executable code. To achieve good performance,
the programmer relies on the compiler to generate efficient code. In this section, I compare
and contrast different compilation techniques, and discuss their potential to solve the pro-
grammability challenges posed by emerging specialized architectures and their impacts on
programming abstractions. Figure 1.1 summarizes how each approach produces an output
code.

Classical compiler transformations. Researchers have studied compiler technology for
over sixty years [9]. A set of program transformations allow programmers to write pro-

. input program p
input program p

p’

Define search space P.
Find p € P such that:
program p = input program pg,.

all programs

! e— DT —

all programs all programs

(a) Classical transformation (b) Autotuning (c) Synthesis

Figure 1.1: Comparison of different compilation techniques

CHAPTER 1. INTRODUCTION 4

grams in higher-level languages like Fortran instead of assembly. Many transformations
have forever changed the way we program. Register allocation allows programmers to rea-
son about virtual variables instead of physical registers. Instruction scheduling hides some
low-level performance understanding from programmers. Compilers have become easier to
build thanks to parser generators, analysis frameworks, and compiler infrastructures such
as LLVM [89]. Nevertheless, building compilers in general, and especially those for new,
unconventional processors, remains daunting. The classical approach to building compil-
ers requires the laborious development of program analyses and transformations along with
heuristics that select the best set of transformations and order them. As a result, building
a mature new compiler may take a decade or more and require extremely high levels of
professional expertise [131]. Furthermore, existing well-developed analyses and transforma-
tions may no longer be applicable to unconventional architectures, and hard-coded heuristic
decisions that are tuned on a specific architecture often lead to suboptimal performance on
other architectures.

Autotuning. One promising technology that addresses some programmability challenges
due to performance understanding and heterogeneity is autotuning [12, 13, 55, 56, 119,
126, 129, 164]. Unlike classical compilers, autotuning compilers do not use fixed heuris-
tics regarding how to apply different transformations. Instead, they try applying various
semantics-preserved transformations with different parameters to obtain many correct out-
put programs, run these programs, and select the one that performs best. Autotuning has
been used to determine best configurations for long-running or frequently-executed appli-
cations to justify the time spent on tuning. While developers do not need to implement
heuristics to select and order program transformations, they must still develop the transfor-
mations, a major challenge due to specialization in unconventional hardware.

Synthesis. Synthesis is an automatic code generation technique that has been rarely uti-
lized in compilers. Synthesis obtains a correct and optimal solution by searching through a
candidate space for an optimal candidate that is semantically equivalent to a specification
program or satisfies some constraints [103, 147]. A candidate space typically includes both
correct and incorrect candidates, for example, all instruction sequences of length up to 10. In
contrast, a candidate space for autotuning typically includes only correct candidates.! Syn-
thesis typically employs a constraint solver, such as an SMT solver, to prove the correctness
(e.g., being equivalent to a specification program) of an output solution and discard incorrect
candidates. By searching the space by increasing length, one is guaranteed to eventually find
a correct program (and probably one that is optimal).

The search among both correct and incorrect programs allows us to produce efficient
code without deriving an input program through a sequence of semantics-preserved trans-

Tt is possible that autotuning search space may contain illegal candidates such as candidates that use
more memory than available, but a percentage of illegal candidates is much smaller than that in synthesis
search space.

CHAPTER 1. INTRODUCTION d

formations, which are challenging for compiler developers to design and implement. More
importantly, fast and correct implementations will be missed by a transformation-based
compiler if the compiler developers do not include transformations required to produce the
desired output. Thus, synthesis is more promising than the other approaches for solving
programmability challenges due to specialization of unconventional architectures.

However, a major limitation of this approach is its speed and scalability to solve larger
programs, similar to autotuning. This limitation is more pronounced in the synthesis setting
because a search space of synthesis typically contains many incorrect candidates, much more
than correct ones. If a search space is too big, we may not even discover any correct candidate.
Therefore, synthesis has not been used as part of the main workflow of a compiler.

1.3 Thesis and Goals

This thesis primarily addresses the programmability challenges due to specialization and
heterogeneity of unconventional emerging computing platforms. The main goal of this thesis
is to enable programmability on new hardware architectures for gains in energy efficiency
and /or performance of applications. My approach toward this goal advocates the following
key concepts for designing and developing programming systems for emerging computing
platforms.

e Concept I: design a programming model with a division of responsbilities between
programmers and different components in a compiler.

e Concept II: apply synthesis in a compiler to sidestep hard-to-develop program trans-

formations.

Concept I: Emerging novel Concept II:
Programming model architecture Synthesis

\@\qy\ % 20 Chapter 2: Programming system for
oOropn) ultra-low-power spatial architectures

Chapter 3: Programming system
F 1o for NIC-accelerated
network applications

W Chapter 4: Superoptimization
construction framework

Chapter 5: Prototype resource-mapping
framework

Figure 1.2: Instantiation of the key concepts in the thesis, centering around exploiting an
emerging computer architecture for performance and energy efficiency.

CHAPTER 1. INTRODUCTION 6

Figure 1.2 summarizes the instantiation of these concepts in the chapters throughout this
thesis, centering around exploiting an emerging novel computer architecture for performance
and energy efficiency.

1.4 Concept I: Programming Model

We must design a programming model in a way that the responsibilities are divided judi-
ciously among compiler’s components (e.g., classical transformations, autotuners, and syn-
thesizers), as well as programmers to achieve the most efficiency and/or performance. The
philosophy behind this concept is that different components of the system, including humans,
are good at different tasks. For example, human experts are often still better than machines
on designing algorithms and data structures. Programmers may also relax semantics of a
program to explore a new design without compromising the correctness of the program, while
a compiler is unable to do this.

Hence, a programming model should strike a balance between hiding low-level details
that can be solved efficiently by a compiler from programmers and exposing important
details that programmers can control when the details are more suitable for humans to solve.
This balance will ultimately let programmers productively explore various implementation
choices to choose the best one. I demonstrate in this thesis how to apply this concept when
designing the programming models for (1) CHLOROPHYLL, a programming system for low-
power embedded applications and (2) FLOEM, a programming system for NIC-accelerated
network applications.

Chlorophyll (Chapter 2). Iintroduce a programming system for ultra-low-power spatial
architectures. The system can generate code for GreenArrays GA144 [65], an energy-efficient,
144-core tile processor with distributed memory and simple interconnect. (GA144 has very
tiny per-core memory and uses stacks instead of registers.

The CHLOROPHYLL programming model lets programmers provide their insights into
how to partition data structures and code for the parts they choose since humans are more
skilled than compilers in designing high-level program layouts. CHLOROPHYLL mitigates
programability challenges due to idiosyncratic characteristics of GA144 by letting the com-
piler handle the rest of programming partitioning, layout, data routing, and code generation
for stack-based instructions. We use CHLOROPHYLL to implement an accelerometer-based,
hand-gesture recognition application for GA144. Compared to MSP430, GA144 is 19 times
more energy efficient and 23 times faster when running this application. As a result, this
application can run on a GA144 powered by a single potato!

Floem (Chapter 3). [introduce a programming system for NIC-accelerated network
applications, balancing the ease of developing a correct application and the ability to refactor
it to explore different design choices in a combined CPU-NIC environment.

CHAPTER 1. INTRODUCTION 7

FLOEM mitigates programmability challenges due to system heterogeneity and special-
ization of emerging programmable NICs through convenient program constructs. FLOEM
enables offload design exploration by providing programming abstractions to assign compu-
tation to hardware resources; control mapping of logical queues to physical queues; access
fields of a packet and its metadata without manually marshaling a packet; use a NIC to mem-
oize expensive computation; and interface with an external application. The compiler infers
which data must be transferred between the CPU and NIC and generates a complete cache
implementation, while the runtime transparently optimizes DMA throughput. I use FLOEM
to explore NIC-offloading designs of real-world applications, including a key-value store and
a distributed real-time data analytics system; improve their throughput by 1.3-3.6x and by
75-96%, respectively, over a CPU-only implementation.

1.5 Concept II: Synthesis-Aided Compilation

Synthesis searches through a candidate space for an optimal candidate that is semantically
equivalent to a specification program or satisfies some constraints. [envision synthesis
as a means to enable a compiler to solve more sophisticated problems and discover better
solutions, bridging increasingly larger gaps between high-level programming abstractions and
actual hardware instructions. Additionally, synthesis is also a low-effort approach to compiler
construction, lessening a compiler’s development time while still generating code that is
comparable in quality to code written by an expert or generated by a classical optimizing
compiler. This is because synthesis sidesteps the need to develop program transformations,
which are difficult to design and realize [101, 131], mitigating programmability challenges
due to specialization from compiler developers. Furthermore, synthesis-aided compilation
is more robust than transformation-based compilation because synthesis does not rely on
pattern-matching using pre-defined rules.

In Chlorophyll (Chapter 2), I phrase the partitioning, layout, and routing as synthesis
problems because heuristic algorithms often fail to discover optimal solutions [14, 59, 114,
168]. Code generation uses a classical transformation that translates intermediate repre-
sentations (IRs) to assembly. This transformation is straightforward to develop because it
contains no optimization. After the IR-to-assembly transformation, I apply superoptimiza-
tion (instruction-level synthesis) to perform local, machine-specific optimizations, without
developing any semantics-preserved transformation. The compilation steps are summarized
in Figure 1.3. Programs generated by CHLOROPHYLL are faster than programs produced
by a heuristic, classical version of our compiler and comparable to highly optimized, expert-
written programs.

Despite its potential, synthesis has not been used in main-stream compilers because of
its scability issues and lack of a development tool for synthesis-aided compilers. In the
domain of classical compilers, researchers have developed design patterns and frameworks
that accelerate the development of classical compilers [54, 89, 163]. These frameworks provide
well-developed analyses, transformations, and heuristics that are adaptable to new, but

CHAPTER 1. INTRODUCTION 8

Program + partial partition annotations

|

Resource allocation

Partitioner synthesis
Program + partition annotations
Resource allocation
Layout & Router ure !
synthesis
Program + location annotations
& routing info
Code Separator classical transformation
Per-core IR
Code generator
IR-to-assembly classical transformation

Per-core machine code l

Program synthesis
(superoptimization)

Code optimizer
T

Per-core optimized machine code

Figure 1.3: Decomposition of the CHLOROPHYLL compiler. Synthesis components are high-
lighted in blue.

still conventional, architectures. In this thesis, I introduce the analogue of these reusable
components for synthesis-aided compilers and offer similar frameworks to developers. From
my experience with CHLOROPHYLL and FLOEM, program synthesis and resource allocation
synthesis are important building blocks for synthesis-aided compilers. As part of these
frameworks, I also tackle the scability challenge and present techniques that make synthesis
more scalable.

Program Synthesis

I believe that program synthesis — which searches for an optimal program equivalent to
a specification program — can be used to sidestep the development of difficult transfor-
mations. This technique has been used to optimize both high-level programs [21, 42, 147]
and low-level machine code [19, 103, 136], but it is often used as a standalone tool separate
from a compiler’s workflow. In CHLOROPHYLL, I demonstrate that it is feasible to use a
superoptimizer (the last component in Figure 1.3) as a part of the compiler.

As an effort toward building a development tool for synthesis-aided compilers, I develop
GreenThumb (Chapter 4), a framework for building a superoptimizer for any Instruction
Set Architecture (ISA). To address the scalability problem, I implement LENS, an enumera-
tive search algorithm that can optimize small- to medium-size program fragments faster than
existing techniques. To optimize larger program fragments, I introduce a context-aware win-
dow decomposition, optimizing a fragment of the entire code with the precise precondition

CHAPTER 1. INTRODUCTION 9

and postcondition from the surrounding context. Lastly, I compensate for the limitation
of an enumerative search by combining symbolic and stochastic search into the system. To
make superoptimization even more practical, we can cache superoptimized code to avoid an
expensive search when optimizing programs we have seen before.

I use GREENTHUMB to build superoptimizers for GA144, ARM, and a subset of LLVM.
The ARM superoptimizer synthesizes code fragments that are up to 82% faster than code
generated by gcc -03 on realistic benchmarks. Linki Tools — a startup that helps customers
develop toolchains for programming various embedded systems — create S10 superopti-
mization framework based on GREENTHUMB. The initial prototype of S10 is built upon
GREENTHUMB and has been refactored into a commercial product that supports multiple
variations of RISC-V ISAs.

Resource Allocation Synthesis

Second, I envision that resource allocation synthesis — which searches for an optimal so-
lution that satisfies hard resource constraints — can be used to sidestep the development
of complicated algorithms to solve complex resource allocation problems. Prior work has
used synthesis (as known as constraint solving in the compiler literature) to perform optimal
register allocation [14, 59|, instruction scheduling [93, 168], instruction selection [22, 169],
high-level synthesis [87], partitioning [114], and layout and routing [170]. However, it re-
mains difficult to encode a resource allocation problem into constraints that can be solved
efficiently. In CHLOROPHYLL, I demonstrate that program partitioning (the first component
in Figure 1.3) can be formulated as a type inference problem, which can be easily encoded
into SMT formulas by implementing a type checker in Rosette [159, 160]. This approach
eases the development of the partitioning synthesizer by utilizing Rosette to automatically
generating SMT formulas through symbolic evaluation.

Later, I develop a resource-mapping library (Chapter 5), a prototype toward a
retargettable resource allocation mapping framework. Using this library, users can simply
implement a function that calculates the cost of a given candidate and use assertion con-
structs to specify hard constraints such as memory capacity constraints. The framework
then automatically generates integer linear programming (ILP) constraints, which can be
solved more efficiently than does SMT, for resource allocation problems [80, 114, 116, 168].
I modify the partition type checker in CHLOROPHYLL to use this library, which reduces its
search time by more than a few orders of magnitude.

CHAPTER 1. INTRODUCTION 10

1.6 Summary of Contributions
In summary, this thesis makes the following contributions:

e CHLOROPHYLL (Chapter 2), the first synthesis-aided compiler that applies both pro-
gram synthesis and resource allocation synthesis as parts of the main workflow of the
compilation process. It provides a programming model that allows programmers to de-
sign parts of the high-level program partitioning and layout, and leave low-level details
for the compiler to fill in.

e FLOEM (Chapter 3), a programming system for developing network applications in a
combined CPU-NIC environment. Its programming abstractions allow programmers
to precisely specify offloading strategies and let the system infer what data need to be
transferred and handle low-level communication details between CPU and NIC.

e GREENTHUMB (Chapter 4), a superoptimizer construction framework that tackles
the scalability and retargettability challenges of superoptimization. It is equipped
with a new scalable superoptimization algorithm and designed to be extensible to
new ISAs. The Linki Tools company has developed commercial superoptimization
framework, S10 [99], from the resurgence of GreenThumb. The company used S10 to
build superoptimizers for many variants of RISC-V and is in the process of developing
superoptimizers for x86 and ARM.

e The resource-mapping library (Chapter 5), a prototype toward a scalable, retargettable
resource allocation synthesis that tackles the challenge of formulating resource mapping
problems into efficient constraints.

11

Chapter 2

Chlorophyll: Programming Spatial
Architectures

Energy requirements have been dictating simpler processor implementations with more
energy dedicated to computation and less to processor control. Simplicity is already the
norm in low-power systems, where 32-bit ARM dominates the phone computer class [155];
the 16-bit TT 430MSP is a typical example of a low-power embedded controller; the even
simpler 8-bit Atmel AVR controller powers Arduino [15, 109].

The GreenArrays GA144 is a recent example of a low-power minimalistic spatial proces-
sor!, composed of many small, simple, identical cores [64]. Likely the most energy-efficient
commercially available processor, it consumes 9-times less energy and runs 11-times faster
than the TT MSP430 low-power microcontroller on a finite impulse response benchmark [17].
Naturally, energy efficiency comes at the cost of low programmability; among the many chal-
lenges of programming the GA144, programs must be meticulously partitioned and laid out
onto the physical cores.

We imagine that future low-power processors will likely be similar to the GA144. First,
they will likely be spatial with simple interconnects between resources or cores. Second,
they will likely have radically different ISAs from what we commonly use today. Third, they
will likely be minimalistic, providing little programmability support and therefore placing a
greater burden on programmers and compilers.

Materials in this chapter are based on work published as (1) Phothilimthana et al., “Chlorophyll:
Synthesis-Aided Compiler for Low-Power Spatial Architectures,” in proceedings of PLDI 2014 [121] and (2)
Phothilimthana et al., “Compiling a Gesture Recognition Application for a Low-Power Spatial Architecture,”
in proceedings of LCTES 2016 [123].

LA spatial architecture is an architecture for which the user or the compiler must assign data, compu-
tations, and communication primitives explicitly to its specific hardware resources such as computing units,
storage, and an interconnect network.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 12

2.1 Contributions and Rationale

In this chapter, we introduce a new programming model and a synthesis-based compiler for
such spatial processors. Our primary hardware target is the GA144 which takes these design
features — spatiality, idiosyncrasy of ISA, and minimalism — to extremes, maximizing the
demands on our programming tool chain; if we can build a synthesizer for this processor, we
should be able to build ones for other low-power sptial processors as well.

Our programming model allows programmers to selectively partition key data struc-
tures and code, leaving the remaining partitioning and communication code generation to
synthesizers. In particular, we design the programming model with a specific division of
responsibilities as follows.

A programmer is responsible for:

e Partial program partitioning and layout. Programmers sometimes prefer to control
how data structures and code should be layouted but not to deal with the low-level
details of the resulting communication code.

e Control-flow statement replication. Although this decision may not need human’s
insight, without a programmer’s guidance, the compiler will have to deal with a very
complicated cost model. Therefore, we delegate this task to the programmer.

e Parallelism. We do not support automatic parallelization because of conflicting goals.
The compiler has to choose between minimizing for latency (consequently, obtaining
parallelism) and resource usage (consequently, minimizing power consumption). These
are conflicting goals because parallelism on GA144 requires more cores and memory.
We believe that this kind of decision should be made by the programmer and not by
the compiler.

Synthesizers are responsible for:

e The rest of program partitioning, layout, and routing. This is because heuristics often
fail to find optional solutions, and developing a good heuristic algorithm to solve this
task is difficult.

e Instruction-level optimization. GA is a stack-based ISA, and there is no well-known
optimization passes developed for stack-based instructions, so we delegate this task to
a synthesizer to automatically discover optimizations.

(Classical transformations are responsible for tasks that can be solved by simple transforma-
tions:

e Code separation from a single program into 144 per-core programs.

e [R-to-assembly transformation (with no optimizaiton).

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 13

2.2 Overview

CHLOROPHYLL compiles a high-level program to spatial machine code via synthesis. How-
ever, solving large and complex problems with synthesis is infeasible. We demonstrate that
the compilation problem can be decomposed into partitioning, layout and routing, code
separation, and code generation, as depicted in Figure 1.3. Most of these subproblems are
difficult for classical compilers but can be solved naturally using synthesis techniques.

Step 1 (partition) The input to this step is a source program with partition annotations
which specify the logical core (partition) where code and data reside. The annotations
allow the programmer to provide insight about the partitioning or experiment with different
partitioning just by changing the annotations. An input program does not have to be fully
annotated. For example, in this program

int@@ mult(int x, int y) { return x x y; 3}

we specify that the result will be delivered at partition 0 but do not specify the partitions
of variable x, y, and operation +.

The compiler then infers (i.e., synthesizes) the rest of the partition annotations such
that each program fragment (per-core program) fits into a core, minimizing a static over-
approximation of the amount of messages between partitions. Here is one possible mapping
(for a very tiny core):

int@0 mult(int@2 x, int@1 y) { return (x!1 *@1 y)!o; }

The inferred annotations indicate that when function mult is called, = is passed as an argu-
ment at partition 2 and y is passed as another argument at partition 1. ! is a send operation.
The program body’s annotations specify that the value of x at partition 2 is sent to partition
1, and is multiplied with the value of y. Finally, the result of the addition is sent to partition
0 as the function’s return value.

Step 2 (layout) The layout synthesizer maps program fragments onto physical cores,
minimizing a refined approximation of communication costs. It also determines a commu-
nication path (routing) between each pair of cores. We map this synthesis problem to an
instance of the well-known Quadratic Assignment Problem (QAP) which can be solved ex-
actly or approximately [90, 46, 51, 145]. We chose to use the Simulated Annealing algorithm
as it is one of the fastest techniques and produces a nearly optimal solution [46]. Given the
partitioned mult function from the previous step, the figure below shows the result of this
step.

(1,1) (1,2) (1,3)
X — *y—preturn

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 14

Step 3 (code separation) The separator splits the fully partitioned program into per-
core program fragments, inserting sends and receives for communication. This step uses a
classical program transformation. We guarantee that the resulting separated programs are
deadlock-free by disallowing instruction reordering within each core. Our running example
results in these program fragments:

// core(1,1) core ID is (x,y) position on the chip

void mult(int x) { send(EAST, x); }

// core(1,2)

void mult(int y) { send(EAST, read(WEST) x y); }

// core(1,3)

int mult() { return read(WEST); }

Step 4 (code generation) The code generator first naively compiles each program frag-
ment into machine code (arrayForth, a stack-based assembly for GA144). The code is then
optimized with a superoptimizing synthesizer, which searches the space of possible instruc-
tion sequences to find ones that are correct and fastest [103]. Although the superoptimizer is
allowed to reorder evaluations, it preserves the order of sends and receives which is sufficient
to prevent deadlock. We apply a sliding window technique to the synthesizer to adaptively
merge small code sequences into bigger ones and input it back into the synthesizer. The
synthesizer persistently caches synthesized code to avoided unnecessary recomputation.

Figure 2.1 illustrates these four steps with a larger example, LeftRotate program. Fig-
ure 2.1(b) shows the result after partitioning the program in Figure 2.1(a) with 64 words of
memory per core. The layout and routing of the program is shown in Figure 2.1(c) after the
layout step, and Figure 2.1(d) displays the program at core (2,6) after the code separation
step.

2.3 Programming Model for Partitioning

In a very limited-resource environment such as a very small many-core, distributed-memory
processor, a program partitioning strategy is very critical because it not only affects the
performance of the application but, more importantly, determines whether the application
can fit and run on the processor. In this section, we present programming abstractions to
control mapping of data and code to different partitions, as well as replication of program
control flow constructs (i.e., program structures). These abstractions simplify reasoning
about partitioning and obviate the need for explicit communication code. We achieve these
goals by:

e cxtending a simple type system with a partition type and optimally inferring unspecified
partitions, and

e introducing a language construct to control the replication of control statements, trad-
ing communication efficiency for code size reduction.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 15

1 int leftrotate(int x, int y, int r) { int @7 leftrotate(int@8 x, int@8 y, int@9 r) {
2 if(r > 16) { if(r >@9 16) {

3 int swap = x; int@8 swap = x; x = y; y = swap;
4 X = y; r=r -@9 16;

5 y = swap; 3}

6 r=r - 16; return ((y >>@7 (16 -@7 r!7)) |@7

7 3 (x!7 <<@7 r!7)) &@7 65535;

8 return ((y >> (16 - r)) | (x << r)) & 65535; }

9 1%

10 void main() {

11 void main(Q) f int@{[0:32]=0,[32:641=1} x[64];

1o int@{[0:327=0,[32:641=1} x[641; inte{[0:32]1=2,[32:64]=3} y[64];

int@{[0:32]1=4,[32:641=5} z[64];
inte6 r = 0;
for (i from @ to 32) {

13 int@{[0:32]=2,[32:641=3} y[64];
14 int@{[0:32]=4,[32:64]=5} z[64];

15 // x[@] to x[31] live at partition 0, 2[i] = leftrotate(x[iJ!8,y[i]18,r!19)14 -@4 1;
16 // x[32] to x[63] live at partition 1, and so on. ro=r +@6 1;
17 if (r >@6 32) r = 6;
18 inte6 r = 0; }
19 for (i from @ to 64) { for (i from 32 to 64) {
20 z[i] = leftrotate(x[i],y[il,r) -@place(z[i]) 1; z[i] = leftrotate(x[i]!8,y[il1!8,r!9)!5 -@5 1;
21 r = r +@place(r) 1; // + happens at where r is r=r +@6 1;
22 if (r > 32) r = 0; if (r >@6 32) r = 0;
23 } 3
24} }
(a) Input source code written in (b) Output from partitioner when memory
CHLOROPHYLL is 64 words
void leftrotate(int x,int y) {
if(read(E)) {
int swap = x; x = y; y = swap;

}

write(E,y);

write(E,x);

35 |0 (36) 37) |4 38 |6 (3.9) 3
x[0:16] z[0:16] r

void main() {
| 4 | for(i from @ to 32) {

1 eols Vo erlt Tesls Ve leftrotate(read(N), read(S));
LeftRotate LeftRotate LeftRotate
2 —_ <« q <«
x[16:32] "y, swap y[16:32] >> << & [T r>16r. 16 }
=T ? = A i = = for(i from 32 to 64) {
= 2 e (£2) (22 leftrotate(read(W), read(E));
y[0:16] 2[16:32] }

}

(¢) Output from layout synthesizer. Numbers
at the top-left corners represent partition IDs
corresponding to the partition annotations in
the source code. Numbers at the top-right
corners are physical core coordinates.

(d) Program at core (2,6) after
code separation

Figure 2.1: Example program written in CHLOROPHYLL, and intermediate results from
partitioning, layout, and code separation steps

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 16

Partition Annotation

CHLOROPHYLL syntax is a subset of C with some modifications and partition annotation,
specifying the partitions of data and operations. Programmers must be able to use partition
annotations to:

(1) place data and operations to specific cores

(2) constrain some data and operations to be on the same core
(3) distribute an array onto multiple cores, and
(4) replicate some operations on multiple cores to process data in parallel.

Following these requirements, we design partition annotations (A) to be expressed as follows:

A = N | {range = N,...} | place(var) | place(array)
range := [N : N]
N = natural number
var := variable
array := array access

For (1), to place data or an operation to a specific partition (logical core), programmers
annotate a variable or an operation with place(l). Programmers can then map a logical core
[to a physical core p as explained later in this section. We do not want [in place(l) to
control the mapping to a physical core directly because we do not want the programmers to
reason about the chip’s layout and data routing when they want to partition programs only
at the logical cores level.

For (2), to constrain a variable or an operation y to be at the same core as another
variable z, programmers annotate y with place(x).

For (3), to distribute an array = onto multiple cores, programmers annotate x with
{[no : n1] = lo,[n1 : mo] = U4, ...}. The annotation will put x[i] on logical core [, when
ng <1< Mg

For (4), to replicate an operation on multiple cores to process a distributed array = in
parallel, programmers annotate the operation with place(x[i]), where 7 is a loop variable.
place(x[i]) refers to the partition where the ith entry of array x lives. Note that place(x[i])
can only be used inside the body of a for loop with an iterator .

Example. Figure 2.1(a) shows LeftRotate program implemented in CHLOROPHYLL.
e On line 18, we set the partition of variable r to be 6 by annotating its declaration.

e On line 21, we annotate + with place(r) to execute + on the same partition as r.

e On line 12, we assign the partitions of distributed array x such that for 0 < ¢ < 32,
x[i] lives in partition 0, and the rest in partition 1.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 17

e On line 21, operation + is assigned to partition 6.

e On line 20, operation — is assigned to place(z[i]); when 0 < i < 32, operation —
at partition 4 is executed, and when 32 < ¢ < 64, operation — at partition 5 is
executed. The loop on line 19 is a loop with a statically-known bound of the form
for (i from el to e2) {...}, where el and e2 are constants. The iterator ¢ starts
from el and is incremented by 1, and the loop condition is ¢ < e2.

Note that most of the data and operations in the program are left unannotated. Their
partitions will be automatically inferred by the partitioning synthesizer to minimize commu-
nication between cores. Hence, CHLOROPHYLL allows the programmers to specify data and
operation when they have a rough partitioning plan in mind, and to leave some unannotated
when they want the compiler to decide.

Our partition annotations resemble data distribution annotations from many high perfor-
mance computing languages [28, 37, 107, 112, 173]. While a scalar variable is replicated on
all processors in these languages, a scalar variable lives in only one place in CHLOROPHYLL
because of our highly-restricted space requirement; same for an operator. Our space require-
ment is a major factor that distinguishes our language design from prior high-performance
parallel languages.

Language Constructs

Constants, variables, arrays, operators, and statements all occupy space in memory. Most
programming constructs — such as variable declarations, variable accesses, variable assign-
ments and binary operations — occupy a constant amount of memory in one partition, so
we can estimate the space occupied by the program with a simple lookup table. However,
we have to handle control flow constructs and arrays with more care as they may require
more complex communication between the involved partitions.

Arrays

There are two kinds of arrays:

e Non-distributed arrays only live in one partition. An index into this type of array
has to live at the same partition as the array itself.

e Distributed arrays live in multiple partitions. Arrays z, y and z from LeftRotate
are examples. This type of array can only be indexed by affine expressions of sur-
rounding loop variables and constants. Accessing this type of array requires no com-
munication because the indexes are comprised of loop variables, which live in every
body partition. CHLOROPHYLL currently does not support other kinds of indexing
into distributed arrays.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 18

A distributed array can be declared in two ways. First, the distributed array z in LeftRotate
in Figure 2.1 is declared as:

inte{[0:32]=0,[32:641=1} x[64];
Alternatively, it can be declared using the following syntax:
int[blocksizel@{p_1,p_2,...,p_n} array[NI];

where n = ceil(N/blocksize). With the second syntax, the same distributed array = can be
declared as:

int[32]@{0,1} x[64];

Control Flow Constructs

CHLOROPHYLL provides a construct for programmers to control the replication of control
statements, trading communication efficiency for code size reduction. We first describe the
two extreme strategies: the actor model, which replicates no code, and the SPMD model,
which replicates all control statements. We then describe the construct to control the repli-
cation.

SPMD vs. Actor Partitioning Strategy

An invariant of our partitioning is that data and non-control computations are not replicated;
they are always assigned to exactly one logical partition, which is mapped to one physical
core. The programmer controls only replication of control statements (ifs and loops), which
determine the control condition, i.e., when a statement is executed.

The Actor Strategy. In the actor strategy, when a partition p; needs a value to be
computed on another partition p,, it sends a request message to p, and waits until the
value is returned. On partition p,, the computation is executed by an actor that is active
only when responding to a request. This strategy is similar to how X10 handles place
changes [134, 153]. While the actor strategy minimizes code duplication, it may incur more
communication. Consider the program in which the function f executes on partition 2.

inte2 f(inte2 i) { ... }

int@l x;

for (i from @ to 100) x += f(i);
When f is an actor, each loop iteration requires three messages (the request to execute f,
the argument, and the return value):

// Partition 1

for (i from @ to 100)
X += actor_call(f, i); // call f in the other partition

// Partition 2
port_execution_mode(); // execute f when requested
int f(int i) { ... }

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 19

Many messages from 1 to 2 can be eliminated by replicating the loop on partition 2, which

is done by the the SPMD model.

SPMD Strategy. The SPMD model, introduced by Callahan and Kennedy [34], replicates
all control flow constructs onto every partition, in the spirit of the Single-Program Multiple-
Data model [84]. When using this strategy, each partition becomes independent in that it
decides when to execute each statement, but naturally the replicated control flow constructs
need to obtain their predicate values, and these may need to be communicated from the
partition that computes the predicate.

More specifically, when the body of a control flow construct (if or while) is spread across
many partitions, called body partitions, the control flow construct needs to be replicated
and placed in each of these partitions. The condition expression is not replicated, but its
result is sent to all the body partitions, each of which in turn uses the received value as
its condition. For a loop with a statically-known bound, the condition expression is also
replicated and computed locally. For the example program above, the SPMD strategy will
split the program into:

// Partition 1
for (i from @ to 100) x += recv();

// Partition 2
int f(¢int i) { ... }
for (i from @ to 100) send(f(i));

Each of the body partitions uses its own copy of . While this strategy duplicates control flow
constructs, it can reduce communication significantly. In this program, only one message is
sent per iteration. However, if the control flow of a program is complex, and the predicates
of the control flow statements are not known at compile time, this strategy may require a
lot of messages for sending the predicate values.

Tradeoffs. In summary, both strategies produce more efficient code in different scenarios.
The actor strategy can significantly help reduce code size and also amount of communication
when the control flow of the program is complex, while the SPMD strategy may be better if
the control flow is simple and statically determined, such as a loop with constant bounds.

Language Construct for Controlling Replication

Rather than controlling replication of control statements in each individual partition, we con-
trol replication at the granularity of a function (a set of partitions or cores). The programmer
specifies which functions should be compiled into actors, and the remaining function calls
are invoked under replicated control flow. Programmers actorize a function by defining:

// Do not specify the requester and master actor

actor FUNC;
// Specify the requester and master actor

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 20

actor FUNC(REQUESTER => MASTER);

Without any actor directive, the compiler defaults to the SPMD partitioning strategy. When
all functions are annotated as actors, the actor strategy is used exclusively.

One of the actor partitions in the function is a dedicated master actor partition, and
the rest are subordinate actor partitions. A requester partition is responsible for sending
a remote execution request to the master actor to invoke the function. The master actor
in turn triggers subordinate actors to invoke their functions through data dependencies.
More specifically, a subordinate actor waits for data to be used in its computations inside
the function; the data essentially triggers the rest of the computations inside the function.
Relying on these triggers, program fragments of actor partitions of a function func do not
need to contain the control statements between the function main to the calls to func. The
program fragments, however, should contain the control flow slice of the program starting
from the function func. If a partition does not belong to any actor function, it contains the
control statements starting from main.

Consider the fully-annotated simplified snippet of code from a hand-gesture recognition
application in Figure 2.2(a). We actorize the function get_b by annotating actor get_b(22=>23),
specifying that partition 22 is a requester and 23 is a master actor. Since get_b also con-
tains partition 13 in addition to partition 23, partition 13 becomes a subordinate actor.
Figure 2.3 displays illustrative per-core program fragments generated by our compiler before
being converted into machine code. Figures 2.3(b) and 2.3(c) display the program fragments
of partition 23 and 13 respectively. Notice that both partitions do not have the control
statements between main and the call to get_b (i.e., while, step, and for). Partition 23,
the master actor, is in the port execution mode (line 1), waiting for 22 to send a remote
execution request to invoke get_b. When 23 finishes executing get_b, it goes back to the port
execution mode waiting for the next request. Partition 23 triggers 13, the subordinate actor,
to start computations in get_b by sending the predicate of if (data dependency). Partition
13 waits for this data (line 5) to start its task. When it finishes the task, it loops back to the
beginning of the program to handle the next request. Figure 2.3(a) displays the partitioned
program fragment at 22. Since it is the requester for get_b, it sends a remote execution
request (line 7) to 23, the master actor. Partition 22 itself is an actor for another function
step, so it is also in the port execution mode.

Design Decisions

To support both partitioning strategies, we make the following design decisions. First, we
let programmers actorize at a function-granularity level. Among the constructs provided by
Chlorophyll, a partition and a function are referenceable entities that can be considered as an
actor, an entity that acts upon receiving a request. However, we believe that programmers
prefer to reason about functionality of programs rather than reason about implementation
details. Furthermore, if programmers let the compiler infer partition types for most parts of
their programs, they will not know which partitions are responsible for which parts of the
programs, so they cannot actorize their programs appropriately. Second, we let programmers

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES

1 fix1_te21 f[81;

2 fix1_t@11 s[81;

3 fix1_t@23 b1[32];

4 fix1_t@13 b2[32];

5

6 actor get_b(22=>23);

7 fix1_t@23 get_b(int@23 index) {

8 if (index <@23 32)

9 return bi1[index];

10 else

11 return b2[index -@13 32];

12 3}

13

14 actor step(32=>22);

15 void step(int@22 g) {

16 for (i from @ to 8)

17 fLil = s[i] *@22 get_b((g <<@22 3) +@22 i);
18 3}

19

20 void swap(int@21 n) {

21 for (i from @ to 8) s[i] = f[i] <<@21 n;
22 3

23

24 void main() {

25 while (1) {

26 int@32 g = ...; int@32 shift = ...;
27 step(g);

28 swap (shift);

29 33

(a) CHLOROPHYLLsource. Blue, pink, and purple
highlight data and computations assigned to partition
22, 23, and 13 respectively. fix1_t is a fixed point
data type with one bit for the integer part.

21

21,11,32

13
b2

22
<<, 4+, *

21 11
f, << s

32
g, shift

i

(b) CDG. An oval represents a control flow con-
struct node. A rectangle represents a partition node,
grouping operations and data that belong to the par-
tition. The entire highlighted path is the control flow
slice of partition 23. The green striped-highlighted
path is its relevant control flow slice. Numbers at-
tached to each node are the relevant partitions of the
node.

(31) (32) (3,3)
shift
g
(2,1) Vv (22
f(i] (g<<3)+|-
<<n
(1,1) (1,2)
s[i]

(¢) Layout and routing. Partition zy is mapped to

physical core (z,y).

Dark and

green denote

actor cores of get_b and step respectively.

Figure 2.2: A simplified example program taken from the gesture recognition application

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 22

port_execution_mode (N);

void step(int g) {
for (i from @ to 8) {
int s = recv(S);
// call actor get_b in p.23 (east)
int b = actor_call(E, get_b, (g << 3) + 1i);
send (W, s * b);
3
}

(a) A requester of the function get_b: partition 22 or core (2,2)

O © 00U WN -

—_

port_execution_mode(W); // wait for request from p.22

fix1_t b1[32];
fix1_t get_b(int index) {
int cond = index < 32;
send (S, cond); // send condition to p.13
if (cond) {
return bil[index];
9 } else {
10 send (S, index); // send index to p.13
11 return recv(S); // return value from p.13

12 33
(b) A master actor of the function get_b: partition 23 or core (2,3)

0~ Uk WN -

fix1_t b2[32];

1

2

3 wvoid get_b() {

4 // wait for condition from p.23 to start

5 if (recv(N)) { 3}

6 else {

7 // get index from p.23 and return value to p.23
8 send(N, b2[recv(N) - 32]);

9 }

10 get_b(); // loop back to the beginning
1 3

12

13 void main() { get_b(); 3

(c) A subordinate actor of the function get_b: partition 13 or core (1,3)

Figure 2.3: Program fragments of partitions 22, 23, and 13 generated by the compiler when
compiling the program in Figure 2.2. The compiler places blue, pink, and purple highlighted
data and computations from Figure 2.2(a) in partitions 22, 23, and 13 respectively. N, S, E,
and W stand for north, south, east, and west ports.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 23

make a decision if each function should be an actor or not. While it is possible to automate
this decision, this automation is not the focus of this thesis. Third, we associate an actor
function with a requester and a master actor. To invoke an actor function, the requester sends
a remote execution request to the master actor, which in turn triggers the subordinate actors
through data dependencies. We could have made the master actor trigger the subordinate
actors using explicit remote execution requests, the same way the requester triggers the
master actor; however, using remote execution requests may incur a lot of communication,
so we decide to utilize data dependencies instead. Nevertheless, we do not rely on the data
dependency to invoke the master actor because we would like to support actorizing functions
with no argument that perform 1/O activities.

Restrictions Imposed by Our Decisions. A subordinate actor partition is invoked
upon receiving any data from an expected neighbor port. Since one message sent between
two GA144 cores is only 18-bit word, we choose to put only data (no metadata) in a message
sent to a subordinate actor partition. As a result, subordinate actor partitions do not have
a mechanism to distinguish between different requests for different tasks. Therefore, we
restrict a partition to be an actor for no more than one actor function. If a partition is
in more than one actor functions, that partition will not be an actor for any function, and
the partition will have the entire control flow from main. If a partition is an actor for a
function, that partition cannot be used anywhere else outside the function, including for
routing messages for any computation outside the function. Thus, too much actorization
may cause the compilation to fail due to its implication on the routing restriction.

Advantages Over Low-Level Partitioning Control. The GreenArrays vendor pro-
vides a programming environment for GA144, called arrayForth. It allows programmers to
explicitly write separate programs for individual cores with the flexibility to manually dupli-
cate data, operations, and control statements, however, in a stack-based assembly language.
Recall that Chlorophyll compiles to arrayForth. We can think of arrayForth as an MPI-style
programming model. Initially, partitioning control flow statements in arrayForth may seem
more intuitive than controlling the partitioning strategy in Chlorophyll because program-
mers maybe more familiar with MPI than SPMD and actor concepts. However, there are
several advantages to program GA144 using Chlorophyll with the programmer-controlled
hybrid partitioning strategy. First, both SPMD and actor partitioning strategies guarantee
that the generated code is deadlock-free, unlike MPI. Although actorization may cause the
compilation to fail because of too many constraints on communication routing, the failure
happens at compile time, so programmers can fix their programs accordingly. Second, it
is easier for a programmer to write a whole program in a sequential style than to write
separate program fragments that run in parallel. Furthermore, using annotations to control
the partitioning strategy enables programmers to easily explore different ways to partition
program structures just by inserting or deleting actor annotations.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 24

Type system

We present a simplified version of our complete type system to convey the core idea. Types
in CHLOROPHYLL can be expressed as follows:

TQp T:

N | any | Pdist Pdist *
natural number

val | int | void

{(Nv)"}

,
p
N :

Our types consist of data types 7 and partition types p. For simplicity, the data types only
include int, val, and void. pg;« is a type of distributed array.

The typing rules shown in Figure 2.4 (omitting some trivial rules) enforce that operands
and operators are in the same partition. Constants and loop variables have partition type any
indicating that they can be at any partition. The partition subtype rule allows an expression

[basic subtype] [partition subtype]

val < int any < N
71 < T2 p1 < p2 [const]
bt :
TGp, < 7202 [subtype] I'Fn: val@any
x:17Qpel . i:val@Qany € I'
_ bl T e literat
TF 2. 7@, |Variablel TF i valGany Lterator]
Fz:7Q{p} el Tz :7@{p1,p2,...,pn} €T
————— [array] [dist array]
I'kz:r@{p} I'kxz:7Q{p1,p2,..., pn}
F}—61:T1@p1 Fl—engz@pg 7'1@,01<T@p Tz@p2<7'@p []
op

T'Fer opQpes:TQp

'k f:mQpy — Qpy The:mQps 13Qps < 11Q@py
'k fe:mQp

[function call]

'k z:7@{p} I'ke:7.Qp, TeQp. < int@p
Ik xle] : 7@p

[access array]

F'kz:7Q{p1,....,on} 'k e: valQany elw
'k zle] : TQp,

[access dist-array]

T'Fe:7TQp

_— d
I'Felps: 7Qpo [send]

Figure 2.4: Typing rules

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 25

with partition type any to be used everywhere. The access dist-array rule ensures that the
index to a distributed array is only comprised of loop variables and constants, and the index
is not out-of-bound, in order to generate valid code for accessing the array.

I'is an operation for sending data from one partition to another. It will be translated
to both a write operation at the sending partition and a read operation at the receiving
partition. It is the only operation that accepts an operand whose partition type may not be
a subtype of the output’s partition type. The compiler automatically generates this operator
during type checking and inferring, so programmers are not required to insert any ! in the
source code.

Parallelism
Implicit Parallelism

Besides pinning data and operations to partitions, partition type can be used for expressing
parallelism. If two operations have different partition types, they will be executed at two
different cores and maybe executed at the same time in parallel, depending on data and
control dependency. Consider the following program:

int@l x;
int@2 y;
X = x +@1 1;
y =y -@2 1;

The increment of x and and decrement of y run in parallel in partition 1 and 2 respectively.

Data Parallelism from Distributed Array

The language also allows programmers to declare distributed arrays, which can be used to
express data parallelism. For example,

// The first 16 elements are in partition 0.
// The last 16 elements are in partition 1.
inte{[0:16]=0, [16:32]1=1} x[32];
for (i from @ to 32)

x[i] = x[i] +@place(x[i]) 1;

will be separated to

// Partition @

int x[16];

for (i from @ to 16)
x[i]l = x[i]l + 1;

// Partition 1

int x[16];

for (i from 16 to 32)
x[i-16]1 = x[i-16] + 1;

Consequently, the two parts of the array are incremented in parallel.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 26

Parallel Module

Assume that we would like to execute the same function on different data in parallel. For
example, we want to update the belief states of HMM classifiers, running these two hmm_step,
in parallel in a hand-gesture recognition program:

hmm_step (acc,modell);
hmm_step (acc,model2);

model1l and model2 contain parameters for classifiers 1 and 2 respectively, and acc are 3-
axis accelerometer data. These two hmm_steps do not run in parallel because only one set of
partitions (hence, one set of cores) is responsible for executing the function. In order to make
them run in parallel, we need to make two copies of hmm_step — e.g., hmm_step1 and hmm_step2
— and ensure that hmm_step1 and hmm_step2 do not use the same partitions. Additionally, we
need to explicitly assign every data and operation in the function to a partition to make sure
that the two copies of hmm_step do not share any common partition. Doing this manually is
highly error-prone and unproductive. Even then, the two functions may not run in parallel
because communication routing may introduce dependency between the two functions.

We introduce an explicit parallel construct called parallel module, which can be used to
express this kind of parallelism. Module and module instance are syntactically similar to
class and object. For example, the program in Figure 2.5(a) uses the module construct to
update the belief states of the HMM classifiers in parallel. Despite its syntactic similarity
to class, module behaves like a macro. Our module expansion pass expands the program
in Figure 2.5(a) to the program in Figure 2.5(b), similar to a macro expansion. After
the expansion, we obtain the program in the original CHLOROPHYLL language. To ensure
parallelism, CHLOROPHYLL enforces that two module instances of the same module occupy
two disjoint sets of partitions. A module instance is essentially a privatization [68, 115, 161]
of variables and operations in a module. Note that our privatization problem is easier than
the privatization problem presented in the literature, since we let the programmers guide
the compiler what to privatize.

// Define module.
module Hmm(model_init) {
fix1_t model[N] = model_init;
fix1_t step(fit1_t[] acc) { ... }
3

// Expanded from module instance 1.
fix1_t hmml_model[N] = modell;
fix1_t hmml_step(fit1_t[] acc) { ... }

// Expanded from module instance 2.
fix1_t hmm2_model[N] = model2;
fix1_t hmm2_step(fit1_t[] acc) { ... }

// Create module instances.
hmm1 = new Hmm(modell);
hmm2 = new Hmm(model2);

hmm1_step (acc);

// Call two different functions. hmm2_step (acc):

hmm1.step(acc);
hmm2 .step(acc);

(b) De-sugared code after module expansion

(a) Source code in Chlorophyll

Figure 2.5: Example of a parallel HMM classification program using the module construct

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 27

Parallel Map and Reduce

We also support parallel map and reduce on distributed arrays. CHLOROPHYLL handles
parallel map and reduce the same way it handles parallel module: using privatization by
desugaring into the original language and adding constraints to the partition type inference
and the routing algorithm. We use parallel map and reduce to inform the compiler to perform
function privatization. For example, the compiler will expand the program with map on the
left into the program on the right, and ensures that functions ssd@ and sdd1 occupy disjoint
sets of partitions.

// Input source program // Intermediate program

int ssd(int a, int b) { int ssdo(int a, int b) { ... }
return (a - b) * (a - b); int ssd1(int a, int b) { ... }

3

void main() {

void main() { int[5]@{0,1} x[10];
int[5]e{0,1} x[10]; int[5]e{0,1} y[10];
int[5]e{0,1} y[10]; int[5]e{0,1} z[10];
int[5]e{0,1} =z[10]; for (i from @ to 5)
z = map(ssd, x, y); z[i] = ssdo(x[i], y[il)

} for (i from 5 to 10)

z[i] = ssd1(x[il, y[il)
b

Similarly, it will expend the program with reduce on the left into the program on the right,
and ensures that functions adde and add1 occupy disjoint sets of partitions.

// Input source program // Intermediate program
int add(int a, int b) { int adde(int a, int b) { ... }
return a + b; int add1(int a, int b) { ... }
}
void main() {
void main() { int[5]e@e{0,1} x[10];
int[5]@{0,1} x[10]; int ans;
int ans = reduce(add, 0, x); int@@ ans0 = 0;
} inte@l ansl = 0;

for (i from @ to 5)

ans@ = add@(ans@, x[il);
for (i from 5 to 10)

ans1l = addl(ans@, x[il);
ans = ans@ + ansl;

}

The compiler requires the function given as the first argument to reduce to be associative.

Pinning Partition to Core

We allow programmers to design their own program layouts by mapping partitions to physical
cores as desired by annotating:

PARTITION --> CORE

We also support pinning a set of partitions to a set of cores by pinning a module instance.
In the program in Figure 2.5(a), we can pin partitions in hmm1 to be in cores (1,1), (1,2),

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 28

(2,1), and (2,2) by:

hmm1 = new Hmm(modell)@{(1,1),(1,2),(2,1),(2,2)3};
// or
hmm1 = new Hmm(modell)@REG((1,1),(2,2));

where REG(BL,TR) is an abbreviation for a set of cores covered by a rectangle whose bottom
left is at the first argument to REG, and top right is at the second argument to REG.

Inside a pinned module, we can pin individual partitions as well. For example, in this
program:

module Hmm(model_init) {
0 --> (0,1)
fix1_t@0 model[N] = model_init;
fix1_t@@ process(x,y,z) { ... }
3

hmm1 = new Hmm(modell1)@REG((1,1),(2,2));

we specify that partitions inside hmm1 should be placed at core (1,1), (1,2), (2,1), and (2,2),
and specifically we want partition 0 in hmm1 to be at (0,1) relative to the most bottom-left
core of hmm1, so partition 0 is placed at core (1 + 0,1+ 1) = (1,2).

Limitations

CHLOROPHYLL does not handle recursive calls and multidimensional arrays. Unbounded
loops can be implemented using while; however, the for loop is currently restricted to have
a statically known bound.

2.4 Synthesis-Aided Compiler

Step 1: Partitioning Process

Partitioning a program can be thought of as a type inference on partition types. The
partitioning synthesizer is constructed from 1) the communication interpreter, which counts
the number of communications needed and 2) the partition space check, which ensures code
and data fit in the memory of the appropriate core.

Communications Interpreter

Let Comm(P,0,z) be a function that counts the number of communications in a given
program P with complete annotated partitions o and a concrete input x. The communication
count is calculated with MaxComm(P, o) = max,e rnpue Comm(P, o, x), where Input is a set
of all valid inputs to the program, assuming while loops are executed a certain number of
times (currently 100). MaxComm computes the maximum number of communications by
considering all possible program paths.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 29

Figure 2.6 shows the evaluation rules for the interpretation of a program under MaxzComm.
In the figure, < P,o >} n is used as MaxComm(P, o) = n. For most constructs, the com-
munication count is equal to sum of its components’ counts. ! increments the communication
count by 1. Loops multiply the count. Conditional statements add the communication count
by the number of the body partitions (subtracted by 1 if one of the body partitions is the
same as the partition of the result of the condition expression).

Partition Space Check

Given a program with complete partition annotations, the partition space checker computes
how much space is used in each partition. The compiler only accepts the program if the
occupied space in every partition is not more than the amount of memory available in a
core. Operations, statements, and communication operations (i.e. read and write) occupy
the memory of the partitions they belong to. Constants occupy memory of the partitions in
which they are inferred to be (usually the partitions of their operators or the left-hand-side
variables they are assigned to).

Partitioning Synthesizer

We implement the communication count interpreter and the partition space checker using
Rosette, a language for building light-weight synthesizers [159, 160]. We represent a spec-
ified partition annotation as a concrete value and an unspecified partition annotation as a
symbolic variable. Given a fully annotated program (one with all concrete partitions), the
communication count interpreter compute a concrete number of communications, and the
partition space checker simply verifies that the memory constraint holds. Given a partially
annotated or unannotated program (a program with some or all symbolic partitions), the
result from the communication count interpretation is a formula in terms of the symbolic
variables, and the partition space check becomes a constraint on the symbolic variables. To
ensure module parallelism, we add an extra constraint to enforce that two module instances
of the same module do not share any common partition types; this guarantees that the two
module instances can run in parallel because they occupy two disjoint sets of partitions.

Once we obtain a formula from the communication count and the partition space con-
straint, we query Rosette’s back-end solver to find an assignment to the symbolic partitions
such that the space constraint holds. If the solver returns a solution, we attempt to reduce
the communication count further by asking the solver the same query with an additional
constraint setting an upper bound on the count. We lower the upper bound until no solution
can be found.

Chapter 5 presents an improved version of the partitioning synthesizer, as a case study for
the resource-mapping library, developed as a general framework for solving resource mapping
problems.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 30

<eo>|n Tke:p@Qp

' [send]
< elpz, 0 > n+ commBetween(p1, p2)

<p,o>|n
<def f(z1,z2,...) {p },o >y lut[f] < n

[function declaration]

_— t
<n,oc>{0 [const]

W [Variable]

<ey,o>|n < ez,0 > no
< ey bopQ@p ez, 0 > n1 + n2

[binary-op]

<eo>|n
——————— [array-access]
< zle],o > n
<er,o>n < ez,0 > na
< feirea..,o > lut[f] +n1 +na+ ...

[function-call]

<ei,o >lln1 < eg,0 >U:TL2
<ej:=e2,0>n+ne

[assignment]

<ci,o>n < c2,0 > na
< ciye2;eno>dnt +na+ .

[sequence]

TFb:1@Qp <co>fn. <tio>ne < f,o>ny

- [if-else]
< if ¢ then t else f,0 >| nc + maz(ny, ny) + commBody(o, p,t, f)

Tkb:7@p <c,o0 > ne <bo>|mn

- [while]
< while ¢ do b,0 >| (nc + ny + commBody(o, p,b)) X loopBound

<c,o>n
- [for]
< for(i froma tob) { ¢ },o0 >y nx (b—a)

def commBetween(pl,p2):

return if pl == p2 then 0 else 1;
def commBody(sigma,p,bodyl, body2, ...):

return |(set of partitions occupied by

body1, body2, ... according to sigma) - {p}l|

Figure 2.6: Evaluation rules for an upper bound on the number of communications. lut is
the function table. [ut[f] < n is storing n at index f of the lookup table.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 31

Pre-Partitioning Process: Loop Splitting

Our communication counter and partition space checker cannot reason about distributed
partition type such as partition type of z[i] if z is a distributed array because a distributed
partition type complicates communication count and space check. To handle this, we in-
troduce a pre-partition process to ensure that for every reference to a distributed array, the
reference corresponds to a part of the array in one partition. With this, place(z[i]) is just a
concrete partition. This process is done by loop splitting.

However, computing loop bounds for the resulting loops is quite complex, so we use
Rosette to implement a loop bound synthesizer similar to the way we implemented the
partitioning synthesizer. Consider this prefixsum program:

inte{[0:5]=0,[5:101=1} x[101;

for (i from 1 to 10)
x[i] = x[i] + x[i-1];

We first duplicate the loop into k loops and replace the loop bounds with symbolic values.
Let k be 3 in this particular example. The main prefixsum loop is expanded to:

for (i from a@ to b@) x[i]
for (i from al to b1) x[il]
for (i from a2 to b2) x[i]

x[i]l + x[i-17;
x[i]l + x[i-17;
x[i] + x[i-1];

The first loop iterates over ¢ from ag to by, the second loop from a; to by, and so on.
We then check that ap = 1 and b, = 10. For every iteration [such that 0 < [< k — 1,
we check that a;.; = b;. For every loop [, we check that each array reference (i.e., x[i] and
x[i — 1]) belongs to only one partition for all i’'s when a; < ¢ < b;; for the z[i] reference,
zla], xla; + 1], ..., z[b; — 1] must be in the same partition. We implemente the checker as
if the bounds are concrete. When the bounds are unknown, they become symbolic values,
and the checking conditions are used as constraints. Finally, the solver outputs one feasible
solution for loop bounds. In this particular example, the output is:

for (i from 1 to 5) x[i] = x[i] + x[i-11; // x[i]l at 0, x[i-1] at @

for (i from 5 to 6) x[il x[i] + x[i-11; // x[i]l at 0, x[i-1]1 at 1
for (i from 6 to 10) x[i] = x[i] + x[i-1]; // x[i]l at 1, x[i-1]1 at 1

The final output is the solution with the smallest possible k.

Example

Figure 2.1(b) shows the result after partitioning the program in Figure 2.1(a) with 64 words
of memory per core. Notice that ! operations are automatically inserted into the program.
If the programmer writes partition annotations such that it is impossible to partition the
program into program fragments that fit on cores, this will result in a compile-time error.
In bigger processors where each core has 128 words of memory, the function LeftRotate can
fit entirely on one core, so this step would annotate everything within the function with the
same partition.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 32

Post-Partitioning Process: Identifying Relevant Control Flow

We decide which partitions need copies of each control flow construct based on the relevant
control flow slice of each program partition. After the partitioning process, we define the
control flow slice and the relevant control flow slice. The compiler will use this information
to route data and separate a program into per-core program fragments.

Control flow slice. We define a control flow slice of a partition, based on the program
slicing terminology [158], to consist of the control flow constructs in the slice of the source
program with respect to the partition’s data and computations as a slicing criterion. A
slice of a program with respect to a slicing criterion can be determined from a Program
Dependence Graph (PDG). We are interested in computing a control flow slice of a program
with respect to a program partition, so we can use a Control Dependence Graph (CDG),
a subgraph of PDG. Typically, a node in a CDG is either a control flow construct or a
statement in the program. However, since our slicing criterion is in the level of a logical
partition instead of a statement, we group statements, operations, and data that belong to
the same partition together in one node, called a partition node. Thus, our CDG contains
partition nodes instead of statement nodes. An edge represents a control dependency between
nodes in a CDG.

Figure 2.2(b) depicts the CDG of the fully-annotated program in Figure 2.2(a). Ovals
represent control flow constructs. Rectangles represent logical partitions. Dashed edges in-
dicate interprocedural control dependency (function calls). A control flow slice of a partition
can be directly derived from a CDG. A control flow slice of a partition consists of all paths
from the main node to the partition node. Figure 2.2(b) highlights the control flow slice of
partition 23.

Actor and its relevant control flow slice. With the pure SPMD strategy, a program
fragment of a partition generated by the compiler will contain the data and computations
assigned to that particular partition and the entire control flow slice of the partition. A
program fragment of a non-actor partition needs to include all control flow constructs in
its control flow slice. In contrast, a partition of an actor function does not need to own
the control flow constructs between main and the calls to that particular function because
a requester partition is responsible for remotely invoking that function. We call the control
flow constructs that an actor partition actually needs (excluding the constructs between main
and the actor function) the relevant control flow slice of the partition.

Therefore, our task is to determine what the relevant control flow slice of each partition in
the program is. First, we need to identify which partition is an actor (called actor partition)
for which function. Identifying an actor partition is not as straightforward as it seems
because not all partitions inside an actor function are actors. To identify actor partitions,
we perform a reachability analysis on a CDG. Partition p is an actor and belongs to actor
function f, if f is the most immediate node in the CDG that covers p. Function f covers
p if and only if there is no path from main to p when f is removed from the CDG. p can be

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 33

covered by multiple actor functions. In such a case, p belongs to the most immediate actor
function; there is no other actor function between the most immediate actor function and p.

For example, in Figure 2.2(b), partition 23 is covered by both actor functions get_b and
step, but get_b is the most immediate function to 23, so 23 belongs to get_b. Now consider
21, which is a partition inside the actor function step, but it is being used in the function
swap outside the scope of step. According to the CDG, step does not cover 21. Thus, 21 is
not an actor partition for step.

Once we identify actor partitions for all actor functions, we can compute the relevant
control flow slice for every partition. Figure 2.2(b) highlights nodes in the relevant control
flow slice of partition 23 with green stripes, which is its original control flow slice excluding
the control flow constructs from main to get_b. We can also see that each program fragment
of a partition in Figure 2.3 only contains the relevant control flow slice of that particular
partition. Partition 22 only contains step and for. Partitions 23 and 13 only contain get_b
and if. Inversely, at each control flow construct, we can also compute a set of relevant
partitions, partitions whose relevant control flow slices contain that particular control flow
construct. Figure 2.2(b) labels each node in the CDG with its relevant partitions.

Step 2: Layout and Routing

In this step, we assign program fragments to physical cores by solving an instance of quadratic
assignment problem (QAP), stated as follows:

Given a set of facilities F', a set of locations L, a flow function ¢t : F' X ' — R, and a
distance function d : L x L — R, find the assignment a : ' — L that minimizes the following
cost function:

> A, fo) - dlalfr), a(f2))

f1EF, f2€F

The facilities represent code partitions, the flow is the number of messages between any two
partitions, and the distance matrix stores the Manhattan distances between each pair. The
solution is a layout that minimizes communication.

This QAP instance can be solved with techniques ranging from Branch and Bound
search with pruning [90], to Simulated Annealing (SA) [46], to Ant System [51], to Tabu
Search [145]. According to our preliminary experiments, SA takes the least amount of time
and generates the best (often optimal) solutions.?

We used an existing SA implementation for the layout synthesizer in our compiler. The
compiler generates a flow graph f by adding flow units for every ! operator and conditional
statement, and the graph is given to the SA program. The result maps program fragments

20n 8 x 18 grid locations and a random flow graph of 144 facilities, SA took 52 seconds, Ant took 157
seconds, Tabu took 1163 seconds, and Branch and Bound timeout. SA returned the best solution compared
to Ant and Tabu.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 34

to physical cores. We use this result to generate a communication path, which is the shortest
path between every two program fragments. The layout and routing of the program in Figure
2.1(b) is shown in Figure 2.1(c).

Additional Constraints

Actor partitions. After the compiler maps logical partitions to physical cores, actor par-
titions become actor cores. This section describes how the routing algorithm works in the
presence of actor cores.

Recall our restriction that if an actor partition is associated with an actor function f,
the actor partition cannot contain code or data used anywhere outside f. In a later step,
the compiler will insert communicate code between communicating cores; therefore, we have
to make sure that for every actor core u in an actor function f, the compiler does not insert
communication code associated with data sending outside f in u.

To ensure this property, we have to modify the routing algorithm. The basic routing
algorithm simply returns any shortest path between the two cores. Since there is no obstacle,
finding a shortest path is as simple as moving along the x-axis to the target y-coordinate
and then moving along the y-axis to the target x-coordinate. With the new restriction, the
routing needs to be able to avoid obstacles. Algorithm 1 displays our routing algorithm.
Generally, when routing from core a to b, we need to avoid routing through any actor core.
However, if a and b are actors of functions f, and f, respectively, then the communication
path between a and b can go through other actor cores of both functions (lines 3-8). We
use A* search algorithm to find a shortest path between a and b that avoids obstacles (actor
cores from the other actor functions) (line 11). After we obtain the path, if @ and b are both
actors of the same function, we promote all cores along the path as actors of that function
if they have never been used before (line 12-13).

Figure 2.2(c) displays the layout and routing of the hand-gesture regconition example in
Figure 2.2(a). Assume that the layout synthesizer maps partition xy to physical core (x,y),
which represents a coordinate on a 2D grid. When the compiler finds a path for sending the
value of the variable shift from node (3,2) to (2,1), it avoids routing through actor cores

(2,2), (2,3), and (1,3).

Parallel modules, map, and reduce. To ensure parallelism, the routing algorithm en-
forces that when cores a and b are in the same module instance, a communication path
between a and b cannot pass any core in the other module instances of the same module
(line 9 and 18-21). Once the algorithm finds a path between a and b, it adds cores along the
path as members of a’s and b’s module instance as well (line 15 and 23-26). We also handle
a parallel map/reduce the same way as a parallel module; we treat a function as a module,
and a function invocation as a module instance.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 35

Algorithm 1 Communication routing

Global variables: ActorsMap, AllActors, UsedCores
1: function ROUTE(a, b, modulesInfo)
2: Allow + {}
actorFuncA + getActorFunc(a)
actorFuncB < getActorFunc(b)
if actor FuncA then
Allow «+ Allow U ActorsMap|actorFuncA]

if actor FuncB then
Allow + Allow U ActorsMap[actorFuncB|

9: Extras < otherModulelInstanceCores(modulesInfo, a, b)
10: Obstacles < (AllActors — Allow) U Extras
11: Path + A*search(a,b, Obstacles)
12: if actorFuncA and actorFuncA = actorFuncB then
13: ActorsMaplactorFuncA] < ActorsMap|actorFuncA] U (Path — UsedCores)

14: UsedCores < UsedCores U Path
15: updateModulesInfo(modulesInfo, a, b, Path)
16: return Path

17:

18: function OTHERMODULEINSTANCECORES(modulesInfo, a, b)

19: if a and b in the same module instance I of module M then

20: return Set of cores of module M — set of cores of module instance I
21: return ()

22:

23: function UPDATEMODULESINFO(modulesinfo, a, b, S)

24: if a and b in the same module instance I of module M then

25: Add S to set of cores of module instance I.

26: Add S to set of cores of module M.

Step 3: Code Separation

The program is separated into multiple program fragments communicating through read
and write operations. We chose this particular scheme because GA does not support shared
memory; cores can only communicate with neighbors using synchronous channels. We pre-
serve the order of operations within each program fragment with respect to their order in
the original program to prevent deadlock. The rest of this section describes this process for
each language construct.

Pre-Separation Process

The compiler recomputes the CDG of the program. At this step, a partition node in the old
CDG becomes a physical core node in the new CDG. We insert additional cores that are
only responsible for routing data into the new CDG, for example, cores (3,1) and (1,2) in
Figure 2.2(c), which are only used for routing data. We also add an edge connecting main
node to core (3,1) node in the new CDG because the value of the variable shift is sent
from core (3,2) to (2,1) through (3,1) in main. Similarly, we add an edge connecting step to

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 36

core (1,2) node because the value of s[i] is sent from core (1,1) to (2,2) through (1,2) in
the function step. With the new CDG, we recompute relevant cores (analogous to relevant
partitions) for each control flow construct.

Separation Process

Afterwards, we separate the program AST into per-core program fragments. While traversing
the program AST in the post-order fashion, we put each piece of data and computation into
the assigned core, and add communication code preserving the original order. For example,
consider

int@3 x = (1 +@2 2)3 *@3 (3 +@1 4)3;

Assume partitions 1, 2, and 3 map to cores (0,1), (0,2), and (0,3) arranged from west to east.
The result after separation is
partition 1: write(E, 3 + 4);

partition 2: write(E, 1 + 2); write(E, read(W));
partition 3: int x = read(W) *x read(W);

E and W are the east and west ports. Note the implicit parallelism in this program: 1 + 2
and 3 + 4 are executed in parallel.

Arrays. Distributed arrays are stored in multiple cores. For example,

int @{[0:16]=0, [16:32]=1} x[32];
for (i from @ to 32)
x[i] = x[i] +@place(x[il) T1;

is separated to

partition 0:
int x[16];
for (i from @ to 16)
x[i] = x[i]l + 1;
partition 1:
int x[16];
for (i from 16 to 32)
x[i-16]1 = x[i-16]1 + 1;

Consequently, the program updates the distinct parts of the array in parallel.

Control flow constructs. When we encounter a control flow construct during the AST
traversal, we place it in all of its relevant cores. When we encounter an actor function call,
we insert a command to send a remote execution request in the requester core to be sent
to the master actor core. We set all master actor cores to port execution mode, waiting
for requests from the appropriate ports. Figure 2.3 displays some program fragments of the
hand-gesture recognition example after the code separation step.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 37

Step 4: Code Generation

This section explains our machine code generation process given single-core programs as
inputs, and describes our optimization via a modular superoptimization algorithm.

Typically, generation of optimized machine code is carried out using an algorithm that
selects instruction sequences and performs local optimization along the way [54]. This type
of algorithm is well-suited for applications in which the optimizations are known, and we
can determine all of the valid ways to generate code. However, this rewrite-based approach
is not easily adapted to our target machine. For example, it is unclear how to design rules
sufficient to take advantage of common non-local optimizations using hardware features like
the bounded, circular stacks.

We sidestep the problem of rule creation by searching for an optimized program in the
space of candidate programs. One such approach is called superoptimization [103, 81, 67,
136]. A superoptimizer searches the space of all instruction sequences and verifies these can-
didate programs behaviorally against a reference implementation. If an optimized program
exists in the candidate space, this approach will find it.

Thus, superoptimization leads to an attractive procedure for generating optimal code for
unusual hardware: (1) generate naive code to use as a specification and then (2) synthesize
optimal code that matches the specification. Unfortunately, superoptimizers scale to small
sequences of instructions [81, 67, 136], which can be smaller than basic blocks in programs,
which may contain up to 100 instructions.

We find that it is non-trivial to apply superoptimization in our problem domain for two
reasons:

e An obvious way to scale superoptimization is to break down large code sequences
(specifications) into smaller ones, superoptimize the small fragments, and then compose
the optimal fragments. However, choosing fragment boundaries arbitrarily can cause
this approach to miss possible optimizations.

e A straightforward method for specifying the input-output behavior of a program frag-
ment prevents some hardware-specific optimizations. For example, the method may
reject a fragment that leaves garbage values on the stack even when it is acceptable to
do so.

Therefore, we propose our code generation strategy, as summarized in Figure 2.7. The
compiler first produces code without optimizations using a naive code generator, and em-
ploys a superoptimizer to generate optimized code. In the next subsection, we explain the
naive code generator and the terminology used in the rest of this section. We then explain
solutions to the above two problems in the subsequent subsections. Finally, we describe our
superoptimizer for program fragments and our approach to encoding the space of candidates
as a set of constraints.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 38

Naive Code Gen

loop {I_Iy
C
AP E K.
if 5D
i
superopt = — .
unit 1] i fragmentk &| Superoptimizer J
iii
v live region
superopt v | > Binary Search on E> .
fragment Vi sliding 4 Running Time
Vil | | window
vili
X CEGIS
block A block A’

Figure 2.7: Overview of the modular superoptimizer

Naive Code Generation and Terminology

The naive code generator translates each per-core high-level program into machine code that
preserves the program’s control flow. The straight-line portions of machine code are stored
in many small units called superoptimizable units. A superoptimizable unit corresponds
to one operation in the high-level program and thus contains a few instructions. Contigu-
ous superoptimizable units can be merged into a longer sequence called a superoptimizable
fragment.

We define a state of the machine as a collection of data stack, return stack, memory, and
special registers. Each superoptimizable unit contains not only a sequence of instructions
but also a live region that indicates which parts of the machine’s state store live variables
at the end of executing the sequence of instructions. The live region of a superoptimizable
fragment is simply the live region of the last superoptimizable unit. Currently, a live region
always contains the entire memory and usually contains some parts of the return stack and
data stack, and some of the registers.

Sequences of instructions P and P’ change the state of the machine from S to T and

T" respectively. Given a live region L, we define P L prif Extract(T, L) = Extract(T', L),
where Extract extracts values that reside in the given live region. Since we do not support
recursion, it is possible to statically determine the depth of the stack at any point of the
program. Since the physical stacks are bounded, our compiler rejects programs that overflow
the data stack or return stack at any point.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 39

v |5
B | = | v B | = r
a a a &
0
(a) Basic (b) Improved

Figure 2.8: Specification on data stack

v X

b b-a
a b-a a

Figure 2.9: Basic specification rejects an instruction sequence that leaves a at the bottom of
the stack.

Specifications for Modular Superoptimization

We specify the behavior of a fragment using a sequence of instructions P and its live region
L. In this section, we will focus on the constraints on the data stack since it is used for
performing every kind of computation and may be used for storing data.

Assume an instruction sequence P changes the data stack from «|f to «a|y as shown in
Figure 2.8(a), and «a/|v is in the live region. « is a part of the stack that contains intermediate
values that will be used later. [is the part of the stack that needs to be removed, and ~ is
the part of the stack that needs to be added. P’ is equivalent to P if P’ produces a|vy, and
the stack pointers after executing P and P’ are pointing to the same location.

However, this specification is too strict, preventing some optimizations. For instance,
consider the example in Figure 2.9 when « is empty, and we want b — a on top of the stack.
The shortest sequence of instruction that has this behavior is eight instructions long, with
the three final instructions dedicated to removing a remaining garbage value (a in this case)
from the stack. It is, in fact, legal to leave a at the bottom of the stack, saving space
by eliminating the three instructions. However, this basic specification rejects the shorter
sequence because its output data stack is ala|b — a, not alb — a.

We modify the specification, as shown in Figure 2.8(b), such that P’ is equivalent to
P if it produces ¢|a|y without any constraint on the stack pointer, where ¢ can be empty.
Since GA stacks are circular, leaving garbage items at the bottom of the stack is essentially

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 40

shifting the logical stack upward. Note that this specification allows not only upward but also
downward logical stack shifts. Thus, this modified specification allows the superoptimizer
to discover hardware-specific optimizations that otherwise cannot be discovered when using
the straightforward specification.

Sliding Window

Our current tool can superoptimize approximately 16 instructions in a reasonable amount
of time. Often, straight-line portions of programs contain more than 16 instructions. There-
fore, we have to decompose a long sequence of instructions into smaller ones and run the
superoptimizer on the smaller sequences in order to make superoptimization technique scal-
able. Instead of breaking the long sequence into multiple fixed-length sequences, our sliding-
window technique adaptively merges superoptimizable units, which usually contain a few
instructions, into a superoptimizable fragment, which will be given as an input to the su-
peroptimizer. The sliding-window technique makes our modular superoptimization more
effective when superoptimization instances timeout or do not find better (more optimal)
solutions. More specifically, in these scenarios, instead of entirely skipping the current fixed
sequence and working on the next one, the superoptimizer will adjust its window size and
attempt to optimize a part of the same sequence (with or without additional instructions)
again.

Given a sequence of superoptimizable units called a unit sequence, the sliding window
technique proceeds as follows.

1. Start with an empty superoptimizable fragment.

2. Append the superoptimizable unit at the head of the unit sequence to the superopti-
mizable fragment, until the number of instructions is greater than the upper bound.

3. Superoptimize the fragment.

4. If a valid superoptimized fragment is found, append the fragment to the global output,
and repeat from 1. If no valid superoptimized fragment is found, append only the first
unit to the global output, remove the first unit from the superoptimizable fragment,
and repeat from 2. If superoptimization times out, add the last unit from the fragment
back to the head of the sequence, and repeat from 3.

5. The process is done when the unit sequence is empty.

Superoptimization and Program Encoding

Given a program fragment and its specification as described in the previous section, our
superoptimizer uses counterexample-guided inductive synthesis (CEGIS) to search for an
equivalent program fragment [148]. Within the CEGIS loop, we use the Z3 [48] SMT solver
to perform the search.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 41

We model the program fragment’s approximate execution time based on the cost of each
instruction as provided by GreenArrays. We use this cost model to perform a binary search
over generated programs looking for optimal performance. Each step involves looking for
a program that finishes under a certain time limit by adding that time as a constraint to
our SMT formula and synthesizing a program that meets both our performance and our
correctness criteria. We can similarly optimize for the length of the program fragment
instead of its execution time.

Encoding to SMT formulas. At a particular point of a program, the state of the machine
consists of two registers, the data stack, the return stack, memory, and stack pointers. Since
each core can communicate with its four neighbors, we represent the data that the core
receives and sends using a communication channel, which is an ordered list of (data, neighbor
port, read /write) tuples. Hence, the machine’s state also includes a communication channel
representing the data the core expects to receive or send along with the relevant ports.
We use this communication channel to preserve the order of receives and sends to prevent
deadlock.

The stacks, the memory, and the communication channel are represented by large bitvec-
tors because Z3 can handle large bitvectors much faster than arrays of integers or arrays of
bitvectors. Each instruction in a program converts a machine’s state into a new machine’s
state. We encode each instruction in our SMT formula as a switch statement that alters a
machine’s state according to which instruction value is chosen.

Address space compression. Address space compression is necessary to scale superop-
timization to large problems. Each core in GA144 can store up to 64 18-bit words of data
and instructions in memory. The generated code assigns each variable a unique location in
memory. An array with 32 entries occupies 32 words of memory. When the formula gen-
erator translates programs to formulas, it discards the free memory space and includes just
enough memory to contain all variables and arrays; the smaller the memory, the smaller the
search space.

Arrays occupy substantial memory space but are usually accessed with a symbolic index
during superoptimization. The index is symbolic if it is an expression of one or more variables
as it depends on the values of those variables. In light of this observation, we compress
the memory of the input program by truncating each array to contain only two entries,
and modifying the variable and array addresses throughout the program accordingly. After
we get a valid optimal output program, we decompress the output program, and ask the
verifier if the decompressed output program is indeed the same as the original input program.
Verification is much faster than synthesis, so we can verify programs with a full address space
in a reasonable amount of time.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 42

Improvement upon Superoptimizer and Sliding Window

In Chapter 4, we present more advanced algorithms for superoptimization and decomposi-
tion in the context of a retargetable superoptimization framework, based on our experience
developing a superoptimizer for GA144.

Interactions Between Steps

Since our compilation problem is decomposed into four subproblems, we lose some optimiza-
tion opportunities, and in some circumstances the compiler produces program fragments
that do not fit on cores. We will discuss these issues in this section.

Program Size and Iterative Refinement Method

One goal of our compiler is to partition a high-level program into program fragments such
that each fragment can fit in a core. Although the partitioning synthesizer overapproximates
the size of each fragment, it still does not consider all communication code. For example,
assume that partition A sends some data to partition B. The partitioner increases the sizes of
both partitions A and B to reflect the effects of the necessary communication code. However,
after the layout step, it is possible that partition A and B are not next to each other. In this
case, partition A communicates to partition B via one or more intermediate partitions. Since
the partitioner does not have any knowledge about the intermediate nodes, the partitioner
does not take into account the space occupied by the communication code associated with
the intermediate nodes. As a result, it is possible that the generated program partitions will
be too large.

For most programs, our compiler generates final programs that fit in cores. Occasionally,
the machine code generated from the compiler does not fit in some cores. When this happens,
programmers have to manually pin data and operations to partitions and/or pin partitions to
cores to make the code fits. Ideally, the compiler should fix the failed program automatically.
One solution is to apply an iterative refinement. The compiler learns from the previously
generated code how much communication code may be inserted if it partitions the programs,
mapping partitions to cores, and generate communication paths the way it has done before,
and then it adjusts its space estimations to be more precise. The iterative refinement reruns
the compilation process until all final fragments fit in physical cores.

Optimization Opportunity Loss

There are some lost optimization opportunities that result from decomposing the compilation
problem into smaller subproblems. We discuss a few examples of optimization losses in this
section.

First, partitioning before optimizing may lead to missed opportunities. For example, let
A, B, and C be program fragments that do not fit in one core. Assume the partitioner groups
A and B together because that yields the lowest communication count. However, if B and

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 43

C are grouped together, the superoptimizer may find a very large execution time reduction
such that grouping B and C together yields faster code than grouping A and B does.

Second, our schedule-oblivious routing strategy introduces another potential loss. Assume
core A can communicate with core B via either core X or Y, and X is very busy before A
sends data to B, while Y is not. The current routing strategy will route data from A to B
via either X or Y arbitrarily. However, in this particular case, we should route through Y so
that B will receive the data from A more quickly, without having to wait for X to finish its
work.

Finally, the scope of superoptimization may prevent some optimizations. We do not
optimize across superoptimizable fragments, because we want the compiler to finish in a
reasonable amount of time. However, knowing the semantics of the fragments that come
before the current fragment could definitely allow the superoptimizer to discover additional
optimizations. Increasing the scope to include loops and branches will help even more.

2.5 Toolchain and Debugger

We have seen in practice that having multiple stages of testing is important and produc-
tive when programming for a complex hardware. For instance, a FPGA toolchain provides
multiple simulations: behavioral simulation, functional simulation, timing simulation, and
circuit verification [172]. Therefore, we develop a functional simulator, multicore simulator,
and machine simulator for testing at different stages of the compilation.

First, the functional simulator allows programmers to test their algorithms without wor-
rying about any implementation detail such as partitioning and layout. Since the core
CHLOROPHYLLlanguage is a subset of C, we can easily generate a C program to be used for
the functional simulation.

Second, the multicore simulator allows us to doubly verify that the compiler indeed
generates deadlock-free code. After the code separation step, we obtain per-core program
fragments. At this stage, we utilize C++ pthread and mutex lock to produce the multicore
simulator. Specifically, we create a thread to simulate a core running each program fragment.
Each communication channel between two cores is represented by a variable with a lock to
simulate blocking reads and writes.

Third, the machine simulator interprets programs at the bit level, as if running on real
hardware. It gives programmers many standard debugging methods to help eliminate bugs
before running on real hardware, including breakpoints, state examination, and code execu-
tion. This has been especially useful when debugging problems with compiler’s generated
machine code. Other useful features include a support for multiple GA144 chips and a sup-
port for building testbeds to simulate /O devices. When debugging multiple chips, their
pins may be virtually wired together, and programs on different chips can be debugged in a
single system.

This choice of having multiple simulators allows for simulating program execution at the
abstraction level of the problem a programmer is trying to resolve.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 44

2.6 Evaluation

In this section, we present the results of running programs on the GA144 chip to test
our hypothesis that using synthesis provides advantages over classical compilation. The
CHLOROPHYLL compiler is open-source and available at github.com/mangpo/chlorophyll.
The toolchain and debugger can be found at github.com/mschuldt/gal44.

Hypothesis 1 The partitioning synthesizer, layout synthesizer, superoptimizer, and sliding
windows technique help generate faster programs than alternative techniques.

We conduct experiments to measure the effectiveness of each component. First, to as-
sess the performance of the partitioning synthesizer, we implement a heuristic partitioner
that greedily merges an unknown partition into another known or unknown partition of a
sufficiently small size when there is communication between the two. This heuristic parti-
tioning strategy is similar to the merging algorithm used in the instruction partitioner in the
space-time scheduler for Raw [92]. Second, to assess the performance of the layout synthe-
sizer, we compare the default layout synthesizer that takes communication counts between
partitions into account with the modified version that assumes the communication count
between every pair of partitions that communicate is equal to one. Third, we compare the
performance of programs generated with and without superoptimization. Last, we compare
sliding-window algorithm against fixed-window algorithms, in which the superoptimization
windows are fixed.

For each benchmark, five different versions of the program are generated.

1. sliding s+p+I: sliding-window superoptimization, partitioning synthesizer, and lay-
out synthesizer

2. fixed s+p+l: with fixed-window superoptimization, partitioning synthesizer, and
layout synthesizer

3. ns+p+l: with no superoptimization, partitioning synthesizer, and layout synthesizer
4. ns+hp+1: with no superoptimization, heuristic partitioner, and layout synthesizer

5. ns+hp-+1il: with no superoptimization, heuristic partitioner, and imprecise layout
synthesizer

We run five benchmarks in this experiment.
e Prefixsum sequentially computes the prefixsum of a distributed array spanning 10 cores.

e SSD computes the 36-bit sum of squared distance between two distributed 18-bit arrays
of size 160, each of which spans four cores. SSDs of different chunks of an array can
be computed in parallel since there is no dependency between them.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 45

2.2x u sliding s+p+| o
fixed s+p+| T
2.0x | ns+p+ E==E
m ns+hp+l C——3
§ 1.8x | ns+hp+il =3
N L]
(—g 1.6x
5 14x |] _ .
Z =
o 12x] —
E]
~ 1.0x]
c
RS
5
[&]
(9]
x
w
Prefixsum SSD Convolution Sart Sin-Cos

Figure 2.10: Execution time of multicore benchmarks normalized to program generated by
the complete synthesizing compiler

e Convolution performs 1D convolution on a 4-core distributed array with kernel’s width
equal to five in parallel. The program first fills in the ghost regions to eliminate loop
dependency before the main convolution computation starts.

e Sqrt computes the 16-bit square roots of 32-bit inputs.
e Sin-Cos computes cos(x) and sin(x).

The execution time result shown in Figure 2.10 confirms our hypothesis. First, compar-
ing ns+p+1 (third bars) vs. ns+hp+I (fourth bars) shows that the partitioning synthesizer
offers 5% on average and up to 11% speedup over the heuristic partitioner. Second, com-
paring ns+hp+l (fourth bar) vs. ns+hp+il (fifth bar) shows that more precise layout is
crucial, providing 1.8x speed up on Convolution. When the layout synthesizer does not take
communication count into account, it fails to group the heavily communicating cores next
to each other; as a result, the communication paths of different parallel groups share some
common cores, preventing those groups from running in parallel. In Prefixsum, the impre-
cise layout generates program fragments that are too large. Third, comparing sliding s+p+l
(first bar) vs. ns+p+l (third bar) shows that superoptimization gives 15% on average and
up to 30% speedup over programs generated without superoptimization. Finally, comparing
sliding s+p+1 (first bar) vs. fized s+p+l (second bar) shows that programs generated with
sliding-window superoptimization are 4% on average and up to 11% faster than programs
generated with fixed-window strategy.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 46

Hypothesis 2 The partitioning synthesizer produces smaller programs and is more robust
than the heuristic one.

The previous experiment shows that the partitioning synthesizer does not generate a
slower program for any of the five benchmarks. In this experiment, we look at the number of
cores the programs occupy, on the same set of benchmarks. In three out of five benchmarks,
the synthesizer generates programs that require significantly fewer cores (using 50-72% of
the number of cores used by the heuristic).

Another experiment also shows that the heuristic algorithm requires parameter tuning
specific to each program, while synthesis does not. The heuristic partitioner does not account
for the space occupied by communication code because calculating the size of communication
code precisely is complicated in the heuristic one. Therefore, we set the space limit per core
by scaling the available space by a factor k, ranging between 0 and 1, in the heuristic
partitioner. The higher the scaling factor, the smaller the number of cores it uses. However,
the maximum feasible k—while generating code that still fits in cores—for different programs
varies (k = 0.8 on SSD and k& = 0.4 on Sqrt). Hence, the synthesizer is more robust than
the heuristic.

Hypothesis 3 Programs generated with synthesis are comparable to highly-optimized expert-
written programs.

We compare the execution time and program size of highly-optimized programs written
by GA144 developers, programs generated with superoptimization, and programs generated
without superoptimization. We have access to the following single-core expert-written pro-
grams.

e FIR applies 16th-order discrete-time finite impulse response filter on a sequence of
samples.

e (Cos computes cosine.

e Polynomial evaluates a polynomial using Horner’s method given the coefficients and
an input.

e [nterp performs linear interpolation on input data given a sequence of reference points.

Figure 2.11 shows that our generated programs are 46% slower, 44% less energy-efficient,
and 47% longer than the experts’ on average, and the superoptimizer improves the running
time by 7%, reduces the energy used by 8%, and shortens the program length by 14%
compared to no superoptimization on average.

The only multicore application written by experts against which we can compare is MD5
hash function. The other applications published on the GreenArrays website, including
SRAM control cluster, programmable DMA channel, and dynamic message routing, require
interaction with a GA virtual machine and specific I/O instructions for accessing exter-
nal memory that CHLOROPHYLL does not support. The MD5 benchmark computes the

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES

Number of Words Used (Normalized) Execution Time (Normalized)

Energy Usage (Normalized)

1.4x

1.2x

1.0x

0.8x

0.6x

1.4x

1.2x

1.0x

0.8x

0.6x

1.4x

1.2x

1.0x

0.8x

0.6x

expert Emm=m i
superopt H—
no-superopt ==

FIR Cos Poly Interp

(a) Execution time

expert = i
superopt Hm——
no-superopt =

FIR Cos Poly Interp
(b) Space

expert === i
superopt H—
no-superopt ===

FIR Cos Poly Interp
(c¢) Energy Usage

Figure 2.11: Single-core benchmarks

47

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 48

hash value of a random message with one million characters. The sequence of characters is
streamed into the computing cores while the hash value is being computed.

For the MD5 benchmark, given no partition annotations to the operators, the partition-
ing synthesizer times out, while the heuristic partitioner fails to produce a program that fits
in memory. We have to manually obtain partition annotations with the assistance of the
partitioning synthesizer. We first ignore all functions except main. After we solve main, we
reintroduce other functions one by one. Finally, we refine the partitioning by examining the
machine code and further breaking or combining partitions just by changing the partition
annotations. Thus, we can generate code for different partitioning (without superoptimiza-
tion) in a very short amount of time. Ideally, this iterative, incremental partitioning process
should be automated as a part of the compiler. We leave this for future work.

We generate two versions of MD5 program. First, we partition the program such that the
generated non-superoptimized code is slightly bigger than memory, but the excess is small
enough that the final superoptimized code still fits. We also generate a second version that
fits on cores without superoptimization. The generated program with superoptimization
is 7% faster and 19% more energy-efficient than the one without superoptimization, and
uses 10 fewer cores. Compared to the experts’ implementation, it is only 19% slower and
31% less energy-efficient, and it uses two-times more cores. This result confirms that our
generated programs are comparable with experts’ not only on small programs but also on a
real application.

Hypothesis 4 The superoptimizer can discover optimizations that traditional compilers
may not.

We implement a few small programs taken from the book Hacker’s Delight [165]: Bithack 1,
x — (z&y), Bithack 2, ~ (x —y), and Bithack 3, (x & y) & (x&y). Figure 2.12 shows that
superoptimization provides 1.8x speedup and 2.6x code length reduction on average. The
superoptimizer successfully discovers bit tricks 2& ~ y, ~ z + y and (z& ~ y) + y as the
faster implementations for the three benchmarks respectively. Investigating generated pro-
grams in many benchmarks, we find that the superoptimizer can discover various strength
reductions and clever ways to manipulate data and return stacks. It also automatically per-
forms CSE within program fragments, and exploits special instructions that do not exist in
common ISAs. Hence, the superoptimizer can discover an unlimited number of optimizations
specific to the machine, while the optimizing compiler can only perform a limited number of
optimizations implemented by the compiler developers.

Hypothesis 5 CHLOROPHYLL increases programmers’ productivity and offers the ability
to explore different implementations quickly to obtain one with satisfying performance.

A graduate student spent one summer testing the performance of the GA144 and TI
MSP430 micro-controller. He managed to learn arrayForth to program the GA144. However,
he was able to implement only two benchmarks: FIR and a simple pedometer application [17].
In contrast, with our compiler, we can implement five different FIR implementations within

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 49

2.2x 3.4x
superopt H—— —] Superopt =
] no-opt == § 3.0x no-opt === |

o 1.8 — =

N E 26x | §

E a $

€ 1| - S 2xr [i

-4 @

2 3 1.8x R

£ 1.0x a

= T 1ax| .

c

S =

3 06x | - 5 1.0x

L @

i} -g 0.6x - E
>
b4

Bhack1 Bhack2 Bhack3 Bhack1 Bhack2 Bhack3
(a) Execution time (b) Space

Figure 2.12: Bithack benchmarks

1.4x F - expert
superopt

1ox L no-superopt =2 |

1.0x

0.8x _

0.6x - .

0.4x —
|

expert FIR-1 FIR-2 FIR-4

Figure 2.13: FIR benchmark

Execution Time (Normalized)

an afternoon. Figure 2.13 shows the running time of three different implementations of
FIR—sequential FIR-1, parallel FIR-2 on two cores, and parallel FIR-4 on four cores—as
well as the experts’ implementation. Parallel FIR-4 is 1.8x faster than the experts’, with
the cost of more cores. Hence, programmers can use our tool to productively test different
implementations and to exploit parallelism to get the fastest implementation. Although
superoptimization makes compilation slower, we can still test implementations quickly by
running the non-superoptimized program for a rough estimate of the performance.

Hypothesis 6 The compiler can be improved by providing more human insights to the
synthesizers.

The GA instruction set does not include division, but expert-written integer division
code is provided in ROM, so programmers can conveniently call that function. Hoewver,
an even faster division can be implemented when a divisor is known; z/k = (ky x) >> ko
where ki and ko are magic numbers depending on k. We modify the superoptimizer so that
it understands division and accepts the division instruction in an input specification. Then,

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 50

Benchmarks | Program Length | Superopt Time (hr)
FIR 90 3.23
Cos 59 2.35
Polynomial 29 1.42
Interp 48 10.01
Bithack 1 13 0.37
Bithack 2 9 4.92
Bithack 3 16 25.08%*

Table 2.1: Superoptimization time (in hours) and program length (in words) for single-core
benchmarks. A word in program sequences contains either four instructions or a constant
literal. *Bithack-3 takes 25.08 hours when the program fragment length is capped at 30
instructions. With the default length (16 instructions), it takes 2.5 hours.

Benchmarks | # of Given Core | Loop Split (s) | Part (s) | Layout (s) | Superopt (hr)
Prefixsum 64 3 36 24 10.78
SSD 64 12 225 24 4.46
Convolution 64 23 122 24 8.39
Sqrt 16 0 566 7 3.60
Sin-Cos 16 2 527 7 6.31
MD5 64 7 N/A 24 16.07

Table 2.2: Compile time of multicore benchmarks. Time is in seconds except for superop-
timization time, which is in hours. The compiler runs on an 8-core machine, so it super-
optimizes up to eight independent instances in parallel. Layout time only depends on the
number of given GA cores. Heuristic partitioning takes less than one second to generate a
solution.

we provide this template to the superoptimizer to fill in the numbers for a specific divisor,
similar to Sketch [148]. Given the template, the compiler can produce a program that is
6-time faster and 3-time shorter than the experts’ general integer division program within
three seconds. In theory, the superoptimizer can discover the entire program without the
sketch, but it could take much longer time to synthesize since this program is 33-instruction
long.

Thus, adding more templates improves performance of generated programs and scalability
of the synthesizer. Regarding the performance improvement, this is similar to implementing
optimizations for traditional compilers. However, synthesis is in general more powerful be-
cause it does not rely on a lookup table and simply discovers faster code by searching.

Tables 2.1 and 2.2 show the compile times for the single-core benchmarks and multicore
benchmarks used in our experiments respectively. Partitioning is also slow, but such algo-
rithms are generally slow; consider, for example, partitioning for FPGA [171]. We address
the issue by allowing programmers to accelerate the partitioning process by pinning data or
code to specific cores when they have relevant insights. The supertopimizer and the parti-

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 51

tioning synthesizer in CHLOROPHYLL are the motivation and the basis of a more advanced
supertopimizer and partitioning synthesizer described in Chapters 4 and 5 respectively.

2.7 Extensive Case Study

We select an accelerometer-based hand-gesture recognition application as our case study, be-
cause this application becomes more and more popular as it provides an intuitive interaction
from human to computer. Typically, the classification is not done locally on an embedded
device that collects the data, because it is computationally expensive. However, we believe
that performing the classification locally is more energy-efficient. We use the gesture recog-
nition algorithm from Wiigee [138]. The main components of the algorithm, displayed in
Figure 2.14, are a filter and a gesture classifier, which is composed of a quantizer and a
Hidden Markov Model (HMM) classifier. The filter removes acceleration vectors, i.e., (x,y,z)
values, that do not significantly deviate from the gravitational acceleration or the previously
accepted vector from the incoming stream of acceleration vectors. Vectors that are passed
continue to the quantizer, which maps each input vector to a group number. The group
number is found by searching for the closest vector to the input vector from the 14 centroid
vectors. The set of centroid vectors are created during training using k-mean clustering.
Given a group number, the HMM classifier of each gesture updates its belief state. The
HMM model is created during training using the Baum-Welch algorithm. After a gesture
completes, we obtain the probabilities from the different gesture classifiers, the gesture with
the highest probability is the most likely gesture.

Figure 2.15 displays the program layout of our gesture recognition application on GA144.
The accelerometer reading, filtering, and the connector of all components are located in the
top part of the chip, as shown in Figure 2.15(a). This leaves the entire bottom portion of
the chip for the gesture classifiers, but there is only room for two gesture classifiers, given
their size. The two gesture classifiers have an identical layout shown in Figure 2.15(b).

Functional Implementation Details

Accelerometer reading. The [2C implementation used for communicating with the ac-
celerometer is based on GreenArrays’ SensorTag application documentation [66]. A 32KHz
software controlled crystal is used to clock the application to read the accelerometer at 200

12C driver Gesture Model Data
Classifier
v v
Filter » Quantizer | HMM Classifier

Figure 2.14: Accelerometer-based gesture recognition algorithm

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 52

SensorTag Accelerometer

'

706 707 708 709
12C main [, 12C timer

i

!

606 607 608 609 Signal frpm
convert |4 | get acc() | crystal timer
(acc)

Y

Send to 600

for printing 506 - 507 508 — 511

- connector(acc) filter(acc)
Y

To gesture 1 module To gesture 2 module

v

(a) Program layout of accelerometer reading and data filtering

prob shift fmax acc
Communication to * ' A
core 506 - 507 : . Gesture classifier module
1 [}
301 3#)2 303 304 305 306 307
: : 206
I 106
: : 207
:
201 202 203 204 205 g=
101 S8l lg.| T8 quantizer(acc)
prob fmax
get_a(i)
al64] v A I
102 103 104 105 107
| psum+= | I sum*b | o | step() || Pil8]
a*s max g<<3 +k
001 — 004 005 006 007
get_b(i)
b[114]

(b) Program layout of one gesture classifier. Black solid and blue dashed
arrows denote data flow for updating the belief states f and s respectively in
every classification round. A dotted-dashed green arrow denotes data flow for
obtaining a final probability after 1000 rounds.

Figure 2.15: Program layout for the gesture recognition application. Each core is labeled
with three digits. The first digit indicates the x-coordinate. The last two digits indicate the
y-coordinate. Orange highlights cores that are actors.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 53

Hz. The main 12C node 708 communicates with the accelerometer using node 709 to wait
for clock edges. Node 608 passes the raw accelerometer register values to node 607, which
converts the raw values into a proper fixed-point format and sends the converted values to
the connector nodes 506 and 507.

Gesture classifier. The connector nodes pass the accelerometer data to the filter function
and the gesture classifiers. They also gather the final probabilities from the gesture classifiers
and send them to node 600 to be printed via a serial port.

There are three types of communication between the connector and a gesture classifier as
illustrated with solid, dashed, and dotted-dashed arrows in Figure 2.15(b). The solid arrows
depict the data flow for the main computation for each round of accelerometer reading. The
main computation derives the group number of an acceleration vector and uses the group
number along with the model data a, b, and pi to update the belief states f and s. Because
of the accuracy limitation of an 18-bit fixed point arithmetic, we have to prevent the belief
state values from getting too small by shifting the values left by some amount. To maintain
correctness, all belief state values in all models must be shifted by the same amount. Thus,
the main computation returns the largest value in its belief state fmax to the connector.
Once the connector collects fmax values from all gesture classifiers, it determines the shifting
value shift. The dashed arrows depicts the data flow for updating the belief state s to be
equal to f shifted left by shift bits. After 1,000 rounds, we print out the final probabilities
of all gestures and reset the classifiers. The dotted-dashed arrows depict the data flow for
obtaining the final probabilities.

Utilizing Language Features

Actorization. Actor functions are used throughout the program, as evidenced in Fig-
ure 2.15, which highlights actor cores. We use actors to both reduce communication and
code size for 12C cores. The crystal timing node 713 sends a request to node 608 to read
accelerometer data. Node 608, in turn, triggers node 708 to start the communication with
the accelerometer. Node 708 also sends a request to node 709 to wait for the next clock
edge and then sends a signal back. Within a gesture classifier module, we also use actors to
reduce code size for cores that store large model data arrays or perform many computations.
The use of actors inside the gesture classifier incurs more communication between cores, but
it is crucial to make the application fit in a small distributed memory.

Parallel module. To make two gesture classifiers run in parallel, we use the parallel
module construct to create two gesture classifiers and place them on different regions of the
chip: core 001-307 and core 008-314. Each module instance contains gesture-specific model
data for a quantizer and an HMM classifier, which is parameterized during the creation of
the module instance.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 54

Programmer-specified program layout. Last, we use partition annotations and partition-
core pinning annotations to specify the program layout displayed in Figure 2.15 in order to
make the code fits in GA144.

e We pin some data and operations to specific partitions.

e We pin those partitions inside the HMM classifier module to make the layout in each
module instance identical.

e We pin each module instance to a specific set of cores.

Experimental Results

In this section, we first evaluate the accuracy of the application running on GA144. Second,
we evaluate the impact of being able to compile the application for GA144. Third, we
evaluate the impact of some language features.

Classification Accuracy

In this experiment, we verified that the compiled application on GA144 is able to predict
hand gestures accurately. We asked two participants to perform circle and flip-roll gestures,
11 times for each gesture. The prediction accuracies for the two participants were 90.91% and
80.82%. We obtained a similar prediction accuracy to Wiigee’s (the original implementation
that our application was based on), which ranges from 84% to 94% [138]. The demonstration
of the application running on GA144 can be viewed at: https://youtu.be/GD91Vm1ZyNQ

GA144 vs. MSP430

Next, we evaluated the impact of being able to run the application on GA144. If running
the application on other processors that do not require difficult programming partitioning
and a careful program layout design were as good as running the application on GA144, we
would not have to bother developing the compiler extensions we have introduced. For this

purpose, we selected MSP430, a widely-used ultra low-power micro-controller to compare
GA144 against.

Implementation for MSP430. We implemented the same application for MSP430F5529
with 128-kB flash, 8-kB RAM, and up to 25 MHz CPU speed. We used 16 bits to represent a
fixed-point number instead of 18 bits as implemented on GA144. We interfaced the ADX1.345
accelerometer to MSP430 via I12C protocol. Note that we used the SensorTag accelerometer
for GA144. Although the accelerometers were different, we implemented the same 12C
protocol on both GA144 and MSP430. Therefore, the two processors performed exactly the
same activities to communicate with the accelerometers. The accelerometers were powered
by a different energy source from the one that powered the processors, and we excluded the

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES

Processor Execution time per round Energy consumption per round
absolute (ms) | relative to GA | absolute (uJ) | relative to GA
GA144 2.639 - 2.231 -
MSP430 61.346 23.2x 41.920 18.8x

%)

Table 2.3: Total execution time and energy consumption per one round of classification

Accelerometer Reading Filter & Classification
Processor | power | time | energy energy power | time | energy energy
(mW) | (ms) (ud) relative to GA | (mW) | (ms) (ud) relative to GA
GA144 0.633 | 2.610 1.652 - 19.957 | 0.029 0.579 -
MSP430 0.565 | 1.346 | 0.760 0.46x 0.686 | 60.00 | 41.160 71.1x

Table 2.4: Energy consumption per each task per one round of classification

energy consumed by the accelerometers when comparing GA144 and MSP430. Therefore,
we believe that our comparison was fair.

Results. We measured the energy consumption for one round of classification. In each
round, the application read an (x,y,z) acceleration vector and updated the belief states of
the two gesture classifiers if the input vector passed the filter. Reading the accelerometer
required many 1/O activities; whereas, filtering accelerometer values and updating the belief
states required a lot of computations. Thus, we measured the energy consumptions of the
two tasks separately to compare the performance of GA144 and MSP430 for the different
types of usages. We powered GA144 with 1.8 V and MSP430 with 2.2 V, as these are the
typical voltages. We powered the accelerometer from a different power source because we are
only interested in energy consumption by the processors. We ran each task in a loop hundred
to hundreds-of-thousand times to measure the average current drawn (using a multimeter
with a microamp precision) and completion time by each processor.

Table 2.3 reports completion time and energy consumption of running one round of
classification on GA144 and MSP430. Overall, GA144 was 18.8x more energy-efficient and
23.2x faster than MSP430. If we look at each task separately in Table 2.4, GA144 was
excellent at performing a computationally heavy task: filtering and classification. It was
three orders of magnitude faster and 71.1x more energy-efficient than MSP430. Recall that
the application should run 200 rounds of classification in one second; each round takes 5
milliseconds. However, MSP430 took 60 milliseconds to update the belief states, if the
accelerometer values passed the filter. Therefore, MSP430 was not able to run 200 rounds
in one second consistently like GA.

On the other hand, MSP430 was better at the accelerometer reading task, 2.2x more
energy-efficient than GA144. However, we believe that we can further optimize GA144 for
this task. In our implementation, the main I12C core, which interacts with the accelerometer,
waits for its I/O pin to become high by spinning in a loop. Therefore, the program can be
optimized by avoiding this loop. Unfortunately, the main I2C core is completely full, and

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES

Features Number of | Overflowed Biggest Total
used cores cores core (words) | words used

Actor + layout 82 0 64 2,609

No actor + layout 90 12 87 3,152

No actor + no layout 82 20 89 3,071

Table 2.5: Size of generated code. Each core can store up to 64 words of data and program.

we need more space for this optimization. To make the optimized code fit in this core, the
compiler will need advanced transformations that exploit transferring code (not just data)
between cores.

Impacts of Actorization, Layout Pinning, and Parallel Module

Without actorization and layout pinning features, we would not be able to run the application
on GA144 because the code could not fit in its memory. Table 2.5 shows the impact of the new
extensions on the sizes of generated programs. ‘Actor’ indicates actorizing some functions
(yielding hybrid partitioning strategy), and ‘layout’ indicates specifying program layout.
When we actorized program appropriately and specified the program layout design (‘actor
+ layout’), the application fit on every core. However, when all functions were actors, the
compiler failed to generate code because it could not find a feasible routing between every
communicating pair of cores. Recall that actors impose additional constraints to the routing
algorithm; the more actors, the more obstacles the routing algorithm has to avoid. When
we did not actorize any function but specified the program layout (‘no actor + layout’),
the compiler successfully generated code, but 12 cores overflowed, and the total number of
cores used was 90 instead 82. When we did not actorize any function and did not specify the
program layout (‘no actor + no layout’), 20 cores overflowed, and the biggest core overflowed
by 25 words. When we actorized some functions but did not specify the program layout, the
compiler failed to find feasible routing between some cores. We excluded the failed versions
from the table. In summary, these results reveal that both hybrid partitioning strategy
and programmer-specified layout are crucial for compiling code for a very limited-resource
environment.

Furthermore, without the parallel module construct, we would have to duplicate the
classification code and explicitly assign every data and computation to a partition to achieve
parallelism. Hence, the parallel module construct tremendously increased our productivity.

2.8 Related Work

Programming Models

A number of programming models have been developed for spatial architectures for different
application domains. Streamlt, a programming model for streaming applications, decom-

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 57

poses the compilation problem much as we do [61]. Partitions are defined by programmers
using filters and can be merged by the compiler. GA144 also shares many characteristics
with systolic arrays. Systolic arrays are designed for massively parallel applications such as
applications with rhythmic communications [79]. Thus, the programming model for systolic
arrays is domain-specific, tailored to such applications [88, 74]. Unlike Streamlt or Systolic,
CHLOROPHYLL targets more general-purpose programming.

The high-performance computing community has developed programming models to sup-
port programming on distributed memory. The SPMD program partitioning strategy was
proposed by Callahan and Kennedy [34]. They pointed out that the partitioned program
can be described as SPMD because in the most naively compiled code, every node executes
the same program but performs computation on distinct data items. Many Distributed For-
tran compilers apply this partitioning strategy with an owner computes rule to partition
programs such that computations happen at the same place where the left-hand-side data
element lives [28, 107].

The actor program partition strategy is similar to the strategy the X10 compiler uses for
handling place changes when programmers use the construct at to specify where the data
and the computations inside the scope of at live and happen [153]. However, our language
construct for actorization is very different from the X10 construct. Since GA144 cores are
very small, multiple cores may be required to perform one functional task. Therefore, we
provide the construct that is suitable for actorizing a task performed by multiple cores. In
contrast, X10 targets much bigger nodes, so a task can normally fit in one node. Thus,
the at construct seems appropriate for X10’s use cases. We borrow the name actor and its
concept of reacting upon a request to perform a task from the actor model for a concurrent
computation [71]. However, we use the actor concept to avoid duplicating control flow
constructs instead of obtaining concurrency.

Our memory model is Partitioned Global Address Space (PGAS), a model used many
languages [35, 173, 112, 134]. Although these languages offer programmers control over
mapping operators to computing resources, they do not provide the programmers an easy
way of exploring different mappings.

Type Systems

Many distributed programming languages have exploited type systems to ensure properties
of interest. Delaval et al. presented a type system for the automatic distribution of high-
order synchronous dataflow programs, allowing programmers to localize some expressions
onto processors [49]. The type system can infer the localization of non-annotated values to
ensure the consistency of the distribution. Like our compiler, the framework generates local
programs to be executed by each computing resource from a centralized typed program. X10
introduces place type and exploits type inference to eliminate dynamic references of global
pointers [38]. Titanium, similarly, uses type inference to minimize the number of global
pointers in the program [98].

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 58

Heuristic-based Compilers

There is substantial work on heuristic-based compilers for spatial architectures. The parti-
tioning and placement algorithms used in TRIPS compiler, Raw space-time scheduler, and
Occam to transputer system, may be applied with some modifications to our problem. How-
ever, these architectures are substantially different from GA144.

TRIPS compiler distributes a computation DAG of up to 128 instructions in each hy-
perblock onto 16 cores [33, 146]. CHLOROPHYLL partitions much larger programs — MD5,
for example has, 4,600 instructions — with loops and branches onto 144 cores. TRIPS also
has hardware-supported routing, while GA144 does not. In Raw compiler, the space-time
scheduler decomposes the partitioning problem into three subproblems: clustering, merging,
and global data partitioning [92], while CHLOROPHYLL solves the partitioning problem as
one problem. The merging algorithm is essentially the same as the heuristic partitioner
with which we compare CHLOROPHYLL in our evaluation. The transputer compiler and
StreamlIt’s Raw compiler also use SA for solving the layout problem [140, 61].

Constraint-based Compilers

Though not as common as heuristic-based compilers, constraint-based compilers have been
studied and used in practice.

Vivado Design Suite performs High-Level Synthesis that transforms a C, C++ or Sys-
temC design specification into a RTL implementation, which in turn can be synthesized onto
a FPGA [171]. The programmer can specify additional constraints using directives, such as
controlling the binding process of operations to cores, albeit in ways that are much more
limited than our programming model facilitates. For example, multiplication is implemented
by a specific hardware multiplier in the RTL design using a specific core.

Yuan et al. solve hardware/software partitioning and pipelined scheduling on runtime
reconfigurable FPGAs using an SMT solver [174]. Although the problem domains of our
compiler and of their partitioner and scheduler are different, Yuan et al. also shows that
solutions obtained from the SMT solver are superior to the solutions obtained from a heuristic
algorithm, but that constraint solving techniques face scalability challenges.

Another constraint-based approach to solve the placement and routing problems uses
Integer Linear Programming (ILP) to map the computation DAG to the graph representing
the hardware’s structure [114]. Its constraints capture placement of computation, data rout-
ing, and resource utilization. However, this technique cannot be applied to our partitioning
and layout problems because it assumes a simple program control flow with no loops, as it
targets scheduling problems at a finer granularity. Consequently, it does not address the
problem of partitioning control statements.

Superoptimization and Program Synthesis

I will discuss more about superoptimization and its related work in Chapter 4.

CHAPTER 2. CHLOROPHYLL: PROGRAMMING SPATIAL ARCHITECTURES 59

2.9 Conclusion

Building efficient optimizing compilers is difficult, even for traditional architectures that are
designed for programmability. With radically stripped down and evolving target architec-
tures such as GA144, the classical compilation approach becomes even more difficult and
less practical to implement.

We have built the first synthesis-aided compiler for extremely minimalist architectures
and introduced a new spatial programming model to provide programmability for programmer-
unfriendly hardware. We introduced language constructs to make complex applications run
on a very small distributed-memory multicore processor and to allow programmers to ex-
press parallelism. First, we let programmers express their insights on how to partition their
programs using partition annotations. Second, we compared actor and SPMD partitioning
strategies and designed the CHLOROPHYLL language to allow programmers to control when
to use which partitioning strategies. Third, we allowed programmers to express parallelism
and program layout. Our compiler decomposed the compilation problem into smaller sub-
problems that can be solved by various synthesizers or easy-to-implement transformations.
Although program synthesis may not scale to large problems on its own, our work showed
that we can overcome these issues by decomposing problems into smaller ones and relying
on more human insight.

The contribution of this chapter is not that our algorithms for partitioning, layout, rout-
ing, and code generation are individually superior to the existing ones, but we show that
our compiler is simpler than a classical compiler while producing comparable code. Program
synthesis techniques enable compiler developers to quickly develop a new high-performance
compiler for a radical architecture without knowing how to implement optimizations specific
to the architecture.

60

Chapter 3

Floem: Programming
NIC-Accelerated Applications

Network bandwidth is growing much faster than CPU performance [5], forcing many
data-center applications to sacrifice application cycles for packet processing [24, 85, 118]. As
a result, system developers have started to ofload computation to programmable network
interface controllers (NICs), dramatically improving the performance and energy efficiency
of many data-center applications, such as search engines, key-value stores, real-time data
analytics, and intrusion detection [36, 85, 94, 127]. These NICs have a variety of hardware
architectures including FPGAs [36, 105, 177], specialized flow engines [6], and more general-
purpose network processors [3, 104].

However, implementing data-center network applications in a combined CPU-NIC en-
vironment is difficult. It often requires many design-implement-test iterations before the
accelerated application can outperform its CPU-only version. These iterations involve non-
trivial changes: programmers may have to move portions of application code across the
CPU-NIC boundary and manually refactor the program.

3.1 Contributions

We propose FLOEM, a programming system for NIC-accelerated applications. Our current
prototype targets a platform with the Cavium LiquidIO [3], a general-purpose programmable
NIC that executes C code. FLOEM is based on a data-flow language that is natural for
expressing packet processing logic and mapping elements (modular program components)
onto hardware devices. The language lets developers easily move an element onto a CPU or
a NIC to explore alternative offloading designs, as well as parallelize program components.
Application developers can define a FLOEM element as a Python class that contains a C

Materials in this chapter are based on work published asPhothilimthana et al., “Floem: A Programming
System for NIC-Accelerated Network Applications,” in proceedings of OSDI 2018 [122].

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 61

implementation of the element. To aid programming productivity, we provide a library of
common elements.

Further examining how developers offload data-center applications to NICs, we have iden-
tified the following commonly encountered problems, which led us to propose abstractions
and mechanisms amenable to a data-flow programming model that can solve these problems.

e Different offloading choices require different communication strategies. We observe
that these strategies can be expressed by a mapping of logical communication
queues to physical queues, so we propose this mapping as a part of our language.

e Moving computation across the CPU-NIC boundary may change which parts of a
packet must be sent across the boundary. Marshaling the necessary packet fields is
tedious and error-prone. Thus, we propose per-packet state — an abstraction that
allows a packet and its metadata to be accessed anywhere in the program — while
FLOEM automatically transfers only required packet parts between a NIC and CPU.

e Using an in-network processor to cache application state or computation is a common
pattern for accelerating data-center applications. However, it is non-trivial to imple-
ment a cache that guarantees the consistency of data between a CPU and NIC. We
propose a caching construct for memoizing a program region, relieving programmers
from having to implement a complete cache protocol.

e Developers often want to offload an existing application without rewriting the code
into a new language. We let programmers embed C code in elements and allow a legacy
application to interact with FLOEM elements via a simple function call, executing those
elements in the host process of the legacy application.

We demonstrate that without significant programming effort, FLOEM can help offload
parts of real-world applications — a key-value store and a real-time analytics system —
improving their throughput by 1.3-3.6x and 75-96%, respectively, over a CPU-only config-
uration.

In summary, this chaper makes the following contributions:

e Identifying challenges in designing of NIC-accelerated data-center applications (Sec-
tion 3.2)
e Introducing programming abstractions to address these challenges (Sections 3.3 and 3.4)

e Developing a programming system that enables exploration of alternative offloading
designs, including a compiler (Section 3.5) and a runtime (Section 3.6) for efficient
data transfer between a CPU and NIC

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 62

3.2 Design Goals and Rationale

We design FLOEM to help programmers explore how to offload their server network applica-
tions to a NIC. The applications that benefit from FLOEM have computations that may be
more efficient to run on the NIC than on the CPU because of the NIC’s hardware-accelerated
functions, parallelism, or reduced latency when eliminating the CPU from fast-path process-
ing. These computations include packet filtering (e.g., format validation and classification),
packet transformation (e.g., serialization, compression, and encryption), packet steering (e.g.,
load balancing to CPU cores), packet generation, and caching of application state. This list
is not exhaustive. Ultimately, we would like FLOEM to help developers discover new ways
to accelerate their applications.

The main challenge when designing programming abstractions is to realize a small number
of constructs that let programmers express a large variety of implementation choices. This
requires an understanding of common challenges within the application domain. We build
FLOEM to meet the following design goals.

Goal 1: Expressing Packet Processing

As described above, computations suitable for NIC offloading are largely packet processing.
Programming abstractions and systems for packet processing have long been studied, and
the Click modular router [111] is widely used for this task. We adopt its data-flow model to
ease the development of packet processing logic (Section 3.3).

Goal 2: Exploring Offload Designs

A data-flow model is also suitable for mapping computations to desired hardware devices,
as we have seen with many Click extensions that support offloading [86, 95, 152]. Similarly,
FLOEM programmers implement functionality once, as a data-flow program, after which they
can use code annotations to assign elements to desired devices and to parallelize the program.
However, trivially adopting a data-flow model is insufficient to meet this design goal. By
inspecting the design of a key-value store and a TCP stack offloaded with FlexNIC [85], we
discover several challenges that shape the design of our language.

Logical-to-physical queue mapping. One major part of designing an offloading strat-
egy is managing the transfer of data between the host and accelerator. Various offloading
strategies require different communication strategies, such as how to steer packets, how to
share communication resources among different types of messages, and whether to impose
an order of messages over a communication channel. We want to implement these strategies
with only a small number of high-level constructs.

By examining hand-optimized offloads, we find that developers typically express commu-
nication in terms of logical queues and then manually implement them using the provided

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 63

hardware communication mechanisms. A logical queue handles messages sent from one ele-
ment to another, while a hardware communication channel implements one physical queue.
As part of an offload implementation, developers have to make various mapping choices
among logical and physical queues. The right mapping depends on the workload and hard-
ware configuration and is typically realized via trial-and-error.

To aid this task, we design a queue construct with an explicit logical-to-physical queue
mapping that can be controlled via parameters and by changing element connections. Exist-
ing frameworks [86, 95, 152] do not support mapping logical to physical queues. To control
the number of physical queues in these frameworks, programmers have to explicitly: (1) cre-
ate more logical queues by demultiplexing the flow into multiple branches and making more
elements and connections, or (2) merge logical queues by multiplexing multiple branches into
one.

Per-packet state. In a well-optimized program, developers meticulously construct a mes-
sage by copying only the necessary parts of a packet to send between a CPU and NIC; this
minimizes the amount of data transferred over PCle. When developers move computation
between the CPU and NIC, they may need to rethink which fields must be sent, slowing the
exploration of alternative offloading designs.

Nevertheless, no existing system performs this optimization automatically. ClickNP [95]
sends an entire packet, while NBA [86] and Snap [152] rely on developers to annotate each
element with a packet’s region of interest, specified as numeric offsets in a packet buffer. We
design FLOEM to automatically infer what data to send across the CPU-accelerator boundary
and offer the per-packet state abstraction as if an entire packet could be accessed anywhere in
the program. This abstraction resembles P4’s per-packet metadata [26] and remote procedure
call interface description languages (RPC IDLs, e.g., XDR [44] and Google’s protobuf [60]).
However, P4 allows per-packet metadata to be carried across multiple processing pipelines
only within a single device, while RPC IDLs generate marshaling code based on interface
descriptions, rather than automatically inferring what to send.

Caching construct. Caching application state or memoizing computation in an in-network
processor is a common strategy to accelerate server applications [47, 78, 94, 100]. While the
abstractions we have so far are sufficient to express this offloading strategy, implementing a
cache protocol still requires a significant effort to guarantee both data consistency and high
performance when messages between a CPU and NIC may arrive out-of-order. Thus, we
introduce a caching construct, a general abstraction for caching that integrates well with the
data-flow model. This construct provides a full cache protocol that maintains data consis-
tency between the CPU and NIC. Unlike FLOEM, existing systems support caching only of
flow state [6, 95] — which typically does not require maintaining consistency between the
CPU and NIC — but not caching of application state.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 64

Goal 3: Integrating with Existing Applications

Prior frameworks were designed exclusively to implement network functions and packet pro-
cessing [40, 50, 86, 95, 111, 117, 152], where computation is mostly stateless and simpler
than in our target domain of server applications. While parts of typical server applications
can be built by composing pre-defined elements, many parts cannot. In our target domain,
developers often want to offload an application by reusing existing application code instead
of writing code from scratch. Besides porting existing applications, some developers may
prefer to implement most of their applications in C because a data-flow programming model
may not be ideal for the full implementation of complex applications.

Therefore, FLOEM lets developers combine custom and stock elements, embed C code
in data-flow elements, and integrate a FLOEM program with an external program. As a
result, developers can port only program parts that may benefit from offloading into the
data-flow model. The impedance mismatch between the data-flow model and the external
program’s model (e.g., event-driven or imperative) raises the issue of interoperability. Our
solution builds on the queue construct to decouple the internal part from the interface part,
which appears to the external program as a function. The external program can execute
the function using its own thread to (1) retrieve a message from the queue and process it
through elements in the interface part, or (2) process a message through the interface part
and push it to the queue.

3.3 Core Abstractions

This section explains the core FLOEM programming abstractions. A more detailed language
definition can be found at github.com/mangpo/floem. We use a key-value store application
as our running example. Figure 3.1 displays several offloading designs for the applicaton:
CPU-only (Figure 3.1(a)), split CPU-NIC (Figure 3.1(b)), and NIC as cache (Figure 3.1(c)).
Figure 3.1(d) illustrates how to create an interface that an external program can use to
interact with FLOEM. We show how to implement these offloads using our programming
abstractions in this and the next sections.

Elements. FLOEM is an asynchronous data-flow programming model. An element is a
function that is invoked when tokens from all input ports are ready (have arrived). When
an element is invoked, it will consume input tokens from all input ports and produce output
tokens to output ports. An element e have O° output ports where O¢ > 0, and an output
port Of can deliver OTY tokens where OT? > 0. An element fires an output port Of with all
OTY tokens at the same time. An output port of element e becomes an input port of another
element €', to which e connects. One invocation of a basic element will fire all its output
ports, while one invocation of a switch element will fire zero or one of its output ports. A
switch element can be used to dynamically drop packets, so it is one source of asyncrony in
the programming model.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 65

GET request SET request

classify

create_item

hasht_get hasht_put

get_resp set_resp

!

(a) No offloading

P1@NIC P1@NIC P1@NIC

SET request GET request . SET request 1
classify
Func obtain_pkt
create._item get_start , set_start
Q1
ﬁql pkt = obtain_pkt(qid)
P2@CPU : app.c
/_/ get_send set_send
(qid, resp) (gid, resp)
Func get_send Func set_send
P2@CPU
Q2 get_out
Q2 —
get_end
ge esp e esp

classify

GET request

set_end

i

get_resp set_resp get_resp set_resp
P3@NIC P3@NIC P3@NIC
(b) Splitting work (c) NIC as cache (d) Interface to external program

Figure 3.1: Several offloading strategies of a key-value store implemented in FLOEM

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 66

Programmers define a port of an element with a list of tokens’ types the port accepts.
A token can be a primitive value, struct, or a pointer. An element can pass a pointer to
another element if they are on the same process and device. Otherwise, the compiler returns
an error.

The listing below illustrates how to create the classify element in our key-value store
example, which classifies incoming requests by type (GET or SET).

class Classify(Element): # Define an element class
def configure(self):
self.inp = Input(pointer(kvs_message))
self.get Output (pointer (kvs_message))
self.set OQutput (pointer (kvs_message))

def impl(self):

self.run_c(r’’’ // C code
kvs_message *p = inp();
uint8_t cmd = p->mcr.request.opcode;

output switch { // switch --> emit one output port

case (cmd == PROTOCOL_BINARY_CMD_GET): get(p);
case (cmd == PROTOCOL_BINARY_CMD_SET): set(p);
i
)
classify = Classify() # Instantiate an element

We specify input and output ports in the configure method. We express the logic for

processing a single packet in the impl method by calling run_c, which accepts C code with

special syntax to retrieve value(s) from an input port and emit value(s) to an output port.
To create the program shown in Figure 3.1(a), we connect elements as follows:

from_net >> hash >> classify
classify.get >> hasht_get >> get_resp >> to_net
classify.set >> item >> hasht_put >> set_resp >> to_net

Note that .get and .set refer to the output ports of classify.

FLOEM accepts only a data-flow program that guarantees that when a processing of one
packet is complete, there is no unconsumed token remaining at any element’s input port; a
token will remain at an input port of an element, if the element has multiple input ports,
and not all input ports are ready.

Queues. Instead of pushing data to the next element instantaneously, a queue can store
data until the next element dequeues it. A queue can connect and send data between elements
on both different devices (e.g., CPU and NIC) and on the same device. For example, in
Figure 3.1(b), queue Q1 sends packets from elements on the NIC to elements on the CPU as
packets are received.

Another source of asyncrony comes from a batching queue, which can be thought of as a
queue into which we insert a single token, then another, and so on, but the other side of the
queue outputs the tokens only when a batch is filled; a number of tokens in a batch cannot
be determined statically.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 67

Shared states. FLOEM provides a shared state abstraction that lets multiple elements
share a set of variables that are persistent across packets. For example, elements hasht_get
and hasht_put share the same state containing a hash table. FLOEM normally prohibits
elements on different devices from sharing the same state. Instead, programmers must use
message passing across queues to share information between those elements. Shared state
lets programmers express complex stateful applications. An element that does not access a
shared state is functional.

Segment and execution model. A segment is a set of connected elements that begins
with from a source element, which is either a from_net element or a queue, and ends with
leaf elements (elements with no output ports) or queues. A queue sends packets between
segments. Our execution model is run-to-completion within a segment. A source element
processes a packet and pushes it to subsequent elements until the packet reaches the end
of the segment. When the entire segment finishes processing a packet, it starts on the next
one. A segment can have one or more instances. By default, each segment has only one
instance on a CPU, so elements within a segment run sequentially with respect to their
data-flow dependencies. If a segment has more then one instances, then these instances
execute concurrently without being synchronized in anyway. Users are responsible to insert
synchronization (e.g., using queues or locks) to ensure the correctness of the program.

FLOEM assigns a thread to execute one instance of a segment, and each thread processes
a packet to completion within a segment; in the other word, a packet is processed solely by
one thread in a segment. However, an execution in a segment may be blocked by a lock or
waiting for an empty slot in a queue.

The program in Figure 3.1(a) has a single segment, while the program in Figure 3.1(b)
has three. Note that not all elements in a segment must be executed for each packet. In our
example, either hasht_get or hasht_put (not both) will be executed depending on the port
where classify pushes a packet to.

Offloading and parallelizing. A segment is a unit of code migration and parallelization.
Programmers map each segment to a specific device by supplying the device parameter.
They can also assign multiple threads to run the same segment to process different packets
in parallel using the cores parameter. Programmers cannot assign a segment to run on both
the NIC and CPU in parallel; the current workaround is to create two identical segments,
one for NIC and another for CPU. Figure 3.2 displays a FLOEM program that implements a
sharded key-value store with the offloading strategy in Figure 3.1(b).

3.4 Advanced Abstractions

This section presents programming abstractions that we propose to mitigate recurring pro-
gramming challenges encounters when exploring different ways to offload applications to a
NIC.

O~ O UL Wi

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 68

Q1
Q2

Queue (channel=2, inst=3)
Queue (channel=2, inst=3)

class P1(Segment):
def impl(self):
from_net >> hash >> queue_id >> classify
classify.get >> Q1.enq[@] # virtual channel 0
classify.set >> create_item >> Q1.enq[1] # virtual channel 1

class P2(Segment):
def impl(self):
self.core_id >> Q1.qid # use core id as queue id
Q1.deql[@] >> hasht_get >> Q2.enql[@]
Q1.deq[1] >> hasht_put >> Q2.enq[1]

class P3(Segment):
def impl(self):
scheduler >> Q2.qid # scheduler produces queue id
Q2.deq[@] >> get_resp >> to_net
Q2.deq[1] >> set_resp >> to_net

P1(device=NIC, cores=[0,1]) # run on core id 0,1
P2(device=CPU, cores=[0,1,2])
P3(device=NIC, cores=[2,3])

Figure 3.2: FLOEM program implementing a sharded key-value store with the CPU-NIC
split strategy of Figure 3.1(b)

Logical-to-Physical Queue Mapping

To achieve correctness and maximize performance, FLOEM gives programmers control over
how the compiler instantiates logical queues for a particular offloading strategy. The queue
construct Queue(channel=n, inst=m) represents n logical queues (n channels) using m physical
queues (m instances). For example, Q1 on line 1 of Figure 3.2 represents two logical queues —
displayed as red channels in Figure 3.1(b) — using three physical queues. Different mappings
of logical to physical queues lead to different communication strategies, as elaborated below.

Packet steering. Developers can easily implement packet steering by creating a queue
with multiple physical instances. For example, in the split CPU-NIC version of the key-
value store (Figure 3.1(b)), we want to shard the key-value store so that different CPU
threads can handle different subsets of keys to avoid lock contention and CPU cache misses.
As a result, we want to represent queue Q1 by multiple physical queues, with each CPU
thread having a dedicated physical queue to handle requests for its shard. The NIC then
steers a packet to the correct physical queue based on its key. FlexNIC [85] shows that such
key-based steering improves throughput of the key-value store application by 30-45%.

To implement this strategy, we create Q1 with multiple physical queues (line 1 in Fig-
ure 3.2). Steering a packet is controlled by assigning the target queue instance ID to the
qid field of per-packet state in the C code of any element that precedes the queue. In this
example, we set state.qid = hash(pkt.key) % 3, where state refers to per-packet state.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 69

Client NIC thread CPU thread
Set (kl, vi)
confirm Kl :set k1
Set (k2, v2)
confirm k2

 miss

set k1

y

Figure 3.3: Inconsistency of a write-back cache if messages from NIC to CPU are reordered

Resource sharing. Developers may want to map multiple logical queues to the same
physical queue for resource sharing, or vice versa for resource isolation. For example, they
may want to consolidate infrequently used logical queues into one physical queue to obtain
a larger batch of messages per PCle transfer. In the sharded key-value store, we want to
use the same physical queue to transport both the GET and SET requests of one shard so
that the receiver’s side processes these requests at the same rate as the sender’s side. To
implement this, we use Q1 to represent two logical queues (line 1 in Figure 3.2): one for GET
and another for SET. Different degrees of sharing can vary application performance by up
to 16% (see Section 3.7).

Packet ordering. For correctness, developers may want to preserve the order of packets
being processed from one device to another. For example, an alternative way to offload the
key-value store is to use the NIC as a key-value cache, only forwarding misses to the CPU. To
ensure consistency of the write-back cache, we must enforce that the CPU handles evictions
and misses of the same key in the same order as the cache. Figure 3.3 shows an inconsistent
outcome when an eviction and a miss are reordered. To avoid this problem, developers can
map logical queues for evictions and misses to the same physical queue, ensuring in-order
delivery.

The ability to freely map logical to physical queues lets programmers express different
communication strategies with minimal effort in a declarative fashion. A queue can also be
parameterized by whether its enqueuing process is lossless or lossy, where a lossless queue
is blocking. Note that programmers are responsible for correctly handling multiple blocking
queues.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 70

Per-Packet State

FLOEM provides per-packet state, an abstraction that allows access to a packet and its
metadata from any element without explicitly passing the state. To use this abstraction,
programmers define its format and refer to it using the keyword state. For our key-value
store, we define the format of the per-packet state as follows:

class MyState(State): # define fields in a state

hash = Field(uint32_t)
pkt = Field(pointer(kvs_message))
key = Field(pointer(void), size=’state.pkt->keylen’)

The provided element from_net creates a per-packet state and stores a packet pointer to
state.pkt so that subsequent elements can access the packet fields, such as state.pkt->keylen.
The element hash computes the hash value of a packet’s key and stores it in state.hash,
which is used later by element hasht_get. To handle a variable-size field, FLOEM requires
programmers to specify its size, as with the key field above.

Caching Construct

With only minimal changes to a program, FLOEM offers developers a high-level caching
construct for exploring caching on the NIC and storing outputs of expensive computation to
be used in the future. First, programmers instantiate the caching construct Cache to create
an instance of a cache storage and elements get_start, get_end, set_start, and set_end.
Programmers then insert get_start right before the get query begins, and get_end right
after the get query ends; a get query is computation we want to memoize. Programmers
must also specify what to store as a key (input) and a value (output) in the cache; this can
be done by assigning state.key and state.keylen (key and keylen fields of per-packet state)
before the element get_start, and assigning state.val and state.vallen before get_end. If
the application has a corresponding set query, elements set_start and set_end must be
inserted, and those fields of the per-packet state must be assigned accordingly for the set
query; a set query mutates application state and must be executed when a cache eviction
occurs. Finally, programmers can use parameters to configure the cache with the desired
table size, cache policy (either write-through or write-back), and a write-miss policy (either
write-allocate or no-write-allocate).

For our key-value store example, we can use the NIC to cache outputs from hash table
get operations by just inserting the caching elements, as shown in Figure 3.1(c). Notice that
queues Q1 and Q2 are parts of the expensive queries (between get_start and get_end and
between set_start and set_end) that can be avoided if outputs are in the cache.

Requirements. The get and set query regions cannot contain any callable segment (see
the next subsection). Elements get_start, get_end, set_start, and set_end must be on the
same device. Paths between get_start and get_end, and between set_start and set_end,
must pass through the same set of queues (e.g., Figure 3.1(c)) to ensure the in-order delivery

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 71

of misses and evictions of the same key. Multiple caches can be used as long as cached regions
are not overlapped. The compiler returns an error if a program violates these requirements.

Interfacing with External Code

To help developers offload parts of their applications to run on a NIC, we let them: (1)
embed C code in elements, (2) implement elements that call external C functions available
in linkable object files, and (3) expose segments of FLOEM elements as functions callable
from any C program. The first mechanism is the standard way to implement an element.
The second simply links FLOEM-generated C code with object files. For the last mechanism,
we introduce a callable segment, which contains elements between a queue and an endpoint,
or vice versa. An endpoint element may send/receive a value to/from an external program
through its output/input port. A callable segment is exposed as a function that can be
called by an external program to execute the elements in a segment.

In Figure 3.1(d), we implement simple computation, such as hashing and response packet
construction, in FLOEM, but we leave complex functionality, including the hash table and
item allocation, in an external C program. The external program interacts with the FLOEM
program to retrieve a packet, send a get response, and send a set response via function
obtain_pkt, get_send, and set_send, respectively. The following listing defines the function
obtain_pkt using a callable segment. This function takes a physical queue ID as input, pulls
the next entry from the queue with the given ID, executes element retrieve_pkt on the entry,
and returns the output from retrieve_pkt as the function’s return value.

class ObtainPkt(CallableSegment):
def configure(self):
self.inp Input(int) # argument is int
self.out Output(q_entry) # return value is q_entry

def impl(self):
self.inp >> Q1.qid
Q1.deq >> retrieve_pkt >> self.out

ObtainPkt (name="obtain_pkt’)

The external program running on the CPU calls obtain_pkt to retrieve a packet that has
been processed by element hash on the NIC and pushed into queue Q1.

3.5 Compiler

The FLOEM compiler contains three primary components that: (1) translate a data-flow
program with elements into C programs, (2) infer minimal data transfers across queues, and
(3) expand the high-level caching construct into primitive elements, as depicted in Figure 3.4.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 72

Floem Floem compiler
elements Cache

expansion

Inferred
data transfer

Data-flow to C

Cavium SDK
Floem NIC process Floem host process
thread thread thread
Floem queue library Floem queue library

Floem queue synchronization

Cavium DMA primitives Q

5 R

[NIC memory] NIC | Host [host memory J

Figure 3.4: FLOEM system architecture

Data-flow To C

FLOEM compiles a data-flow program into two executable C programs: one running on the
CPU and the other on the NIC. Our code generator compiles a segment of primitive elements
into a chain of function calls, where one element corresponds to a function. The compiler
replaces an output port invocation with a function call to the next element connected to that
output port. The calling element passes an output value to the next element as an argument
to the function call. If an output port is connected to multiple elements, we replace the
output port invocation with multiple corresponding function calls. An output switch {...}
block is transformed into conditional branches, while an output {...} block is removed.
Earlier compiler passes transform queues (Section 3.5) and caching constructs (Section 3.5)
into primitive elements.

Inferred Data Transfer

In this section, we explain how the FLOEM compiler infers which fields of a packet and
its metadata must be sent across each queue, and how it transforms queues into a set of
primitive elements.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 73

classify

create_item

| fill_entry_get | | fill_entry_set |
dequeue_get K @
| save_entry_get | | save_entry_set |

hasht_put

Q1
/_/ \ hasht_get
hasht_get hasht_put

(a) Before transformation (b) After transformation

Figure 3.5: The key-value store’s data-flow subgraph in the proximity of queue Q1 from the
split CPU-NIC version

Liveness analysis. The compiler infers fields of per-packet state to send across a logical
queue using a classical liveness analysis [8]. The analysis collects used and defined fields at
each element and propagates information backward to compute a live set at each element
(i.e., a set of fields that will be used by the element’s successors). For each segment, the
compiler also collects a use set of all fields that are accessed in the segment. We separately
compute live and use sets for each queue’s channel.

Transformation. After completing the liveness analysis, the compiler transforms each
queue construct into multiple primitive elements that implement enqueue and dequeue oper-
ations. In the split CPU-NIC version of the key-value store example, the compiler transforms
queue Q1 in Figure 3.5(a) into the elements in Figure 3.5(b).

To enqueue an entry to a logical queue at a channel X, we first create element fill_entry_X
to reserve a space in a physical queue specified by state.qid. We then copy the live per-
packet state’s fields at channel X into the queue. To dequeue an entry, element dequeue_get
locates the next entry in a specified physical queue, classifies which channel the entry belongs
to, and passes the entry to the corresponding output port (i.e., demultiplexing). Element
save_entry_X allocates memory for the per-packet state on the receiver’s side to store the
use fields and a pointer to the queue entry so that the fields in the entry can be accessed
later. Each save_entry_X is connected to the element that was originally connected to that
particular queue channel. Finally, the compiler inserts a dequeue_release element to release
the queue entry after its last use in the segment. The compiler generates different variations
of fill_entry_X and dequeue_get depending on the parameters programmers select when
creating queues in their applications. These generated elements utilize the built-in queue
implementations described in Section 3.6.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS

user’s program

get_start

write-through

before get

i

cache get

miss

get query
hit

cache set

after get

write-back

cache get

miss

cache set

!

evict?

hit

no

set query

set_start

set_end

Figure 3.6: Cache expansion rules

Cache Expansion

before set

)| &

cache del

set query
exe both

i

cache set

[after set]

cache set

v

evict?

yes

no

74

The compiler expands each high-level caching construct into primitive elements that imple-
ment a cache policy using the expansion rules shown in Figure 3.6. Each node in the figure
corresponds to a subgraph of one or more elements. For a write-through cache without al-
location on write misses, the compiler expands the program graphs that handle get and set
queries in the left column into the graphs in the middle column. For a write-back policy with
allocation on write misses, the resulting graphs are shown in the right column. For get-only
applications, we skip the set expansion rule.

We apply various optimizations to reduce response time. For example, when a new alloca-
tion causes an eviction in a write-back cache, we write back the evicted key asynchronously.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 75

Instead of waiting for the entire set query to finish before executing after get (e.g., sending
the response), we wait only until the local part of set query (on a NIC) reaches a queue to
the remote part of set query (on a CPU). Once we successfully enqueue the eviction, we
immediately execute after get.

Supported Targets

We prototype FLOEM on a platform with a Cavium LiquidIO NIC [3]. We use GCC and
Cavium SDK [2] to compile C programs generated by FLOEM to run on a CPU in user mode
and on a NIC, respectively. If a FLOEM program contains an interface to an external C
program, the compiler generates a C object file that the external application can link to in
order to call the interface functions.

Intrinsics, libraries, and system APIs of the two hardware targets differ. To handle
these differences, FLOEM lets programmers supply different implementations of a single el-
ement class to target x86 and Cavium via impl and impl_cavium methods, respectively. If
impl_cavium is not implemented, the compiler refers to impl to generate code for both targets.
To generate programs with parallelism, FLOEM uses pthread on the CPU for multiple seg-
ments and relies on the OS thread scheduler. On the NIC, we directly use hardware threads
and assign each segment to a dedicated NIC core. Consequently, the compiler prohibits
creating more segments on the NIC than the maximum number of cores (12 for LiquidlO).

3.6 PCle I/O Communication

To efficiently communicate between the NIC and CPU over PCle, FLOEM provides high-
performance, built-in FIFO queue implementations. Because DMA engines on the NIC are
underpowered, they must be managed carefully. If we implemented queue logic together
with data synchronization, the queue implementation would be extremely complicated and
difficult to troubleshoot. Hence, we decouple queue logic (handled by a queue implemen-
tation) from data synchronization (handled by a queue synchronization layer). The queue
synchronization layer (sync layer) can also be used for other queue implementations not yet
provided, such as a queue with variable-size entries.

Our sync layer provides the illusion that the NIC writes directly to a circular buffer in
host memory, where one circular buffer represents one physical queue. Under the hood, the
sync layer performs the following optimizations:

e keep shadow a copy of a queue in the local NIC memory
e asynchronously synchronize the local copy with the master copy in host memory
e batch multiple DMA requests

e overlap DMA operations with other computation

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 76

Floem NIC process

enqueue_reserve
enqueue_submit worker manager
dequeue thread thread

dequeue_release

access_entry Floem queue library cpu_own
access_done) nic_own
Floem queue synchronization
dma_read
dma_write

Cavium DMA primitives

dma_complete

Figure 3.7: Provided API functions by different components. A ENY:! represents: A provides
function f for B to use.

Currently, we support only a one-way queue that transfers data either from CPU to NIC
or from NIC to CPU.

Components, Agents, and Interaction

Code components. Sending data across PCle using a queue in FLOEM requires five code
components: NIC application code, CPU application code, a NIC queue, a CPU queue, and
the queue synchronization layer. These are components highlighted in yellow in Figure 3.4.
The NIC queue, CPU queue, and sync layer are libraries provided by FLOEM. The queue
library and sync layer provide API functions for the other components to use, as depicted
in Figure 3.7 and explained below.

e The sync layer provides functions access_entry and access_done for a NIC queue im-
plementation to use.

e The NIC/CPU FIFO queue library provides functions enqueue_reserve, enqueue_submit,
dequeue, and dequeue_release for NIC/CPU application code to use, and functions
cpu_own and nic_own for the sync layer to use. The queue is FIFO with respect to the
order of enqueue_reserve and dequeue.

NIC and CPU application code are generated by FLOEM compiler. However, program-
mers can also use our queue library for their own NIC and CPU application code written in
C (instead of application code written in FLOEM data-flow language).

Agents. The process of transferring data requires at least three threads, highlighted in
blue in Figure 3.4.

e A NIC runtime manager thread maintains coherence between queue storages on the
NIC and CPU.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 77

e A NIC worker thread runs NIC application code, which calls NIC queue functions,
which in turn call functions provided by the sync layer.

e A CPU worker thread runs CPU application code, which calls CPU queue functions.

Typical interaction. To simplify the explanation, consider sending data from CPU to
NIC using a queue with a single entry. For a queue that sends data from a CPU to NIC, a
queue entry is CPU owned, if the entry is empty or being enqueued; it is NIC owned, if it
contains data. A typical interaction between the NIC runtime manager thread, NIC worker
thread, and CPU worker thread is depicted in Figure 3.8. The sync layer provides an illusion
to the NIC and CPU application threads as if there is one copy of a queue storage. Thus, from
the application threads’ perspective, Figure 3.8(b) is seen as Figure 3.8(a). The pseudocode
of our example CPU and NIC application code in C syntax is shown in Figure 3.9. The
pseudocode of our queue library is shown in Figure 3.10, while the pseudocode of our sync
layer is shown in Figure 3.11.

We do not explicitly track a queue’s head and tail; instead, we use a status flag in each
entry to determine if an entry is filled or empty. We choose this design to synchronize both
the queue entry’s content and status using one DMA operation instead of two. Thus, our
runtime continuously checks the state of every queue entry and performs actions accordingly.
Typically, a queue entry on the NIC cycles through invalid, reading, valid, modified, and
writing states, as shown in Figure 3.8(b).

To send a queue entry from CPU to NIC, the CPU application obtains an access to a
queue entry by calling enqueue_reserve (label A in Figure 3.9), which returns an entry if it
is CPU owned (label E in Figure 3.10). The CPU application writes content into the queue
entry and calls enqueue_submit (label B), which changes the status field of the entry to be
NIC owned (label F).

The NIC runtime continuously checks the state of every queue entry. If an entry’s state
is inwvalid (label J in Figure 3.11), it issues DMA read and sets the entry’s state to reading
to mark that the entry is being read from the host memory. Once the DMA read request is
complete (label K), the runtime checks if the entry is NIC owned using nic_own function. If
the entry is NIC owned, the runtime changes the entry’s state to valid.

The NIC application dequeues an entry by calling dequeue (label C), and dequeue in turn
calls access_entry function (label G). If the entry is valid, then access_entry returns an entry
pointer that the NIC application can access (label I). Once the NIC application is done ac-
cessing the entry, it releases the entry by calling dequeue_release (label D). dequeue_release
modifies the status field of the entry to be CPU owned and calls access_done (lable H).
dequeue_release is a way for the data receiver (NIC) to notify the data sender (CPU) that
it is done processing the entry.

When the runtime sees that the entry is CPU owned (labels L and M), via cpu_own
function, it issues a DMA write request to write the modified status field to CPU memory.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS

NIC thread

local
change

deq()/

acceSS;ent,y()

entry

oY

deq;release()
access;d(,ne()

deq()/

aCCSSs;entry()

NULL
| Nut

NIC thread

local
change'

deq()/

access_entry()

entry

deq;release()/
access;dOne()

deq()/

access_entry()

NULL
N

(status flag)

Entry

eng.

is CPU own?
| isCPUown!
N

enq,submit()/
flag = NIC own
| lee = T

enq,reserveo/

is CPU own?
| is CPU VR

—

CPU thread

reserVeO/

entry

NULL

local
i change

(a) Assuming there were shared memory between
CPU and NIC

Entry on NIC

(status flag) | (state)
... el
reading
R G,

NIC @

valid
TCPU own b
S
*writing
invalid

NIC Runtime PClIe Controller

st = reading

if niccown() = 1

st = valid
if cpuown() =1
<t = modified
DMA Write
st = writing
st = invalid write complete

DMA reaqd
I

read complete

DMA read
DN

read complete

DMA write
N

write complete

(b) Actual interaction

Entry on CPU
(status flag)

CPU own

NIC own

78

CPU thread

enq,reserveo/
is CPU own?
entry

engsubmit()/
flag = NIC own
| e = T

enq,reserve()/
is CPU own?

NULL
—

local
change

Figure 3.8: Interaction between NIC runtime manager thread, NIC worker thread, CPU
workder thread, and status of a queue entry. Red highlights functions provided by the queue
library. Blue highlights functions provided by the queue synchronization layer. enq and deq
are abbreviations for enqueue and dequeue respectively.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 79

// CPU application

void cpu_app() {
int qid = queue_init(Q);

while(true) {

struct my_entry xentry = enqueue_reserve(qid); <:>
if(entry) {
fill_content(entry->content);

enqueue_submit(entry);
}
}
}

// NIC application
void nic_app() {
int gid = queue_init(host_storage_address);

while(true) {
struct my_entry xentry = dequeue(qid); (:)
if(entry) {
do_something(entry->content);

dequeue_release(entry); (:)
3
}
}

// Running threads

NIC runtime manager thread: runtime();
NIC worker thread: nic_app();

CPU worker thread: cpu_app();

Figure 3.9: Example application pseudocode

Once the DMA write request is complete (label N), the runtime changes the entry’s state
from writing to invalid. Then, this process repeats forever.

If the NIC application tries to dequeue an entry that is not in a wvalid state, access_entry
returns NULL, and dequeue in turn returns NULL. In this scenario, the NIC application will
have to retry again later. Similarly, if the CPU application tries to fill in an entry that is
NIC owned, the enqueue_reserve will return NULL, and the CPU application will have to
retry later.

The NIC-to-CPU transfer process is very similar to CPU-to-NIC except that the NIC is
the one writing the entry’s content, and the CPU modifies a queue entry by only changing
the status field. For this, the NIC queue library also provides enqueue_reserve and enqueue
functions, whereas the CPU queue library provides dequeue and dequeue_release as well.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 80

// CPU queue implementation (queue with one entry)
struct my_entry { // custom queue entry

int status;

int content;

3

void *storage[MAX_QUEUEST;
int qid = 0;

int queue_init() {
storage[qid] = malloc(sizeof(struct my_entry));
qid++;
return qid - 1;

3

void *enqueue_reserve(int gid) {
struct my_entry *entry = storage[qid];
if(entry->status == 0)
return entry;

3

void enqueue_submit(struct my_entry *entry) {
entry->status = 1; (:)
}

// NIC queue implementation (queue with one entry)
struct my_entry { // custom queue entry

int status;

int content;

3

int nic_own(void *p) {
uint8_t *entry = p;
return entry->status == 1;

}

int cpu_own(void* p) {
uint8_t *entry = p;
return entry->status == 0;

}

int queue_init(uint64_t address) {
return create_dma_circular_queue(
address, sizeof(struct my_entry), sizeof(struct my_entry),
nic_own, cpu_own);

3

void *dequeue(int qgid) {
return access_entry(qid, 0); (:j
}

void dequeue_release(struct my_entry *entry) {
entry->status = 0;
access_done(entry); (::

}

Figure 3.10: Pseudocode of CPU queue implementation, and NIC queue implementation

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 81

// Queue synchronization layer

int create_dma_circular_queue(address,
n * sizeof(struct my_entry),
sizeof (struct my_entry),
nic_own, cpu_own);

void *access_entry(int qid, int index) {
entry = pointer to queue qid at a given index;
if(state == VALID) return entry; (:)
else return NULL;

}

void access_done(void xentry) {
// This function does some work when the batching optimization is enabled.

}

void manage_queue_entry(void* entry) {

if(state == INVALID) { (J)
DMA_read(entry_host_address, entry, entry_size);
state = READING;

}

else if(state == READING && DMA read is complete) { (:)
if(nic_own(entry)) state = VALID;
else state = INVALID;

3

else if(state == VALID && cpu_own(entry)) { (:)
state = MODIFIED;

3

else if(state == MODIFIED) { (M)
DMA_write(entry_host_address, entry, entry_size);
state = WRITING;

}

else if(status == WRITING && DMA write is complete) { (:)
state = INVALID;

3

}

void runtime() {
while(true) {
for(e in entries from all queues)
manage_queue_entry(e);

Figure 3.11: Pseudocode of the queue synchronization layer

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 82

Queue Implementation

A NIC queue implementation must use an API provided by the queue synchronization layer to
access queue entries. A CPU queue implementation is the same as the NIC queue implemen-
tation except that the CPU implementation checks and modifies the ownership of a queue
entry directly without using the API provided by the sync layer. The queue implemen-
tation explained in the previous section is an example. Queue developers may implement
a queue with a different queue entry structure and provide different functions other than
enqueue_reserve, enqueue_submit, dequeue, and dequeue_release for application code to use
as long as it satisfies the properties explained later in this section.

API provided by the queue synchronization layer

create_dma_circular_queue (
uint64_t host_storage_address,
int queue_size, // in bytes
int entry_size, // in bytes
int (*nic_own)(voidx),
int (*xcpu_own)(voidx*))

--> int qid

During initialization, a queue implementation on the NIC must register a queue to the op-
timization layer via this function. Queue developers must supply int nic_own(void xentry),
a status checking function that takes a pointer to a queue entry and returns whether the
entry is ready to be processed on the NIC or not; if ready, it returns 1, otherwise returns
0. Similarly, int cpu_own(void *entry) returns whether the entry is done being processed on
the NIC or not; if done, it returns 1, otherwise returns 0. If the queue is for sending data
from NIC to CPU, from the NIC’s enqueueing perspective, an entry is NIC owned, if it is
empty and available to be filled. If the queue is for receiving data from the CPU, an entry is
NIC owned, if it is finished being filled by the CPU. nic_own and cpu_own checks an entry’s
status by looking at the entry’s status field.

access_entry(int qid, int index) --> void =*xentry

access_done(void* entry) --> void

In a NIC queue implementation, enqueue and dequeue routines must call access_entry
(qid, index) to obtain a pointer to a queue entry at a given index. access_entry returns NULL
if the entry is not ready to be accessed on the NIC. When the queue finishes accessing the
entry, the queue must call access_done. For enqueuing process, the queue calls access_done
when it finishes enqueuing the entry. For dequeue process, the queue calls the function when
it finishes using the entry.

When access_entry(qid,index) returns a pointer to an entry, the return pointer al-
ways contains the same address for the same index. For example, if two threads call
access_entry(qid,index) at the same time, and both get pointers to to the same entry index

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 83

(the same local memory address that stores entry index). A thread will see the change made
to the entry by another thread.

Queue properties

1. FIFO.

2. Circular pattern: its entries are stored in a circular pattern according to its enqueuing
order.

3. One-way queue: a queue cannot be used for sending data both from NIC to CPU and
from CPU to NIC.

4. Fixed size: all entries in the queue are of the same size. This property can be relaxed
with a slight modification to the sync layer.

5. Must not access an entry beyond its size.

6. NIC own vs. CPU own status of an entry can be determined by solely examining the
entry.

7. Must handle concurrency between multiple threads accessing a queue on the same
device.

8. The structure of a queue entry and nic_own/cpu_own functions must be carefully de-
signed to guarantee correctness.

Regarding Property 6, an entry usually contains a status field. This field must be accessed
and modified between access_entry and access_done because it is a part of an entry. However,
an explicit status field is not required as long as the status can be determined by solely
examining the entry.

Regarding Property 7, the queue implementation must guarantee race-free enqueue/de-
queue. For example, if two threads try to enqueue into a queue at the same time by calling
access_entry(qid, i) at the same index i, both of them may get entry pointers for accessing
the same entry. Therefore, the queue implementation is responsible for preventing double
enqueuing/dequeuing using locks or atomic instructions. This is something queue developers
have to handle already when implementing a queue for a multi-threaded program running
on one device.

Property 8 is most difficult to reason about as the queue developers have to understand
how the DMA controller transfers data between the NIC and CPU. For the Cavium LiquidIO
NIC, the atomic unit of data transfer across PCle is 64 bytes. When we issue a DMA
operation for data larger than 64 bytes, the DMA controller will perform multiple in-order
64-byte transfers. Problems may arise when an entry is larger than 64 bytes. First, we cannot
put a status field at the beginning of an entry because, during data transfer, the other side
may see a ready status before receiving the content. However, if we put the status field at

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 84

the end of an entry, the NIC may still see a ready status but stale content because the DMA
controller transfers the old content just before the CPU updates the content and status, and
then transfers the updated status. Our solution is to include checksum in an entry, and make
nic_own checks the checksum. We use this checksum for CPU-to-NIC transfers. However,
we do not need the checksum for NIC-to-CPU transfers because the NIC is the one issuing
DMA operations, so it will never issue a transfer on an entry that is still being modified
locally.

If the queue implementation meets these properties, the sync layer guarantees delivery
of every single queue entry for blocking (non-dropping) queues.

Queue synchronization layer

The sync layer relies on FLOEM NIC runtime to maintain coherence between buffers on the
NIC and CPU by taking advantage of the circular access pattern of reads followed by writes.

Typically, a queue entry on the NIC cycles through invalid, reading, valid, modified,
and writing states, as shown in Figures 3.8(b) and 3.12. An invalid entry contains stale
content and must be fetched from host memory. An asynchronous DMA read transitions an
entry from invalid to reading state. Once the read completes, and the entry is NIC owned
(indicated by the status flag), the entry transitions to valid state. It may transition back to
inwvalid if it is still CPU owned, for example, when the NIC attempts to dequeue an entry
that the CPU has not finished enqueuing. The runtime uses the status checking functions
provided by the queue implementation to check an entry’s status flag. The program running
on the NIC can access only wvalid entries; function access_entry returns the pointer to an
entry if it is in valid state; otherwise, it returns NULL.

An entry transitions from valid to modified once the queue implementation calls function
access_done to indicate that it is finished accessing that entry. An asynchronous DMA write
then transitions the entry to nwvalid state, based on the assumption that the CPU side will
eventually modify it, and the NIC must read it from the CPU. This completes a typical cycle
of states through which an entry passes. Under DMA operation failures (which are rare),
the runtime will reissue the operation until successful.

The complete state machine of a queue entry is displayed in Figure 3.12, and the pseu-
docode of the state transition is shown at labels J-N in Figure 3.11.

In contrast, it is sufficient to keep track of only CPU own and NIC own states for a queue
entry on CPU. This is because CPU is not the one issuing DMA operations. A queue entry’s
flag sufficiently captures these two states, so we do not need an extra layer to keep track
of the queue entry’s state. Unlike on CPU, NIC has to track more states. A queue entry
itself only captures the valid state and non-valid states, and the non-valid states cannot be
distinguished further by just looking at the entry. Therefore, the runtime has to track the
other states explicitly.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 85

invalid
A

DMA finishes
& nic_own() =0

DMA read

A

reading
DMA finishes DMA fails
& nic_own()=1

DMA

finishes valid

cpu_own() =0
cpu_own() =1

modify

DMA write

A

writing DMA fails

Figure 3.12: Queue entry’s state machine

invalid writing modify valid reading invalid

1 ! ! !

write_finish write_start write_local read_ready read_start

Figure 3.13: States of different portions in a queue. Pointers always advance to the right
and wrap around. Each portion contains zero or more queue entries. A timeline of a queue
entry is depicted in Figure 3.8(b).

Batching and Runtime

In the actual implementation, we do not track the state of each queue entry one-by-one.
Instead, we use pointers to divide a queue into different portions with different states. When
a pointer advances to the right, we effectively change states of the entries that the pointer
has moved past. These pointers wrap around a circular queue buffer. Figure 3.13 depicts
how we keep track of the states of different portions of the queue using pointers; the entries
between read_ready and read_start are in the reading state; the entries between write_local
and read_ready are in the wvalid state; and so on.

The runtime has a dedicated routine to advance each of the five pointers and executes
these routines in a round-robin fashion.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 86

1. The DMA read routine issues a DMA read on the next batch of entries, and advances
the read_start pointer to the end of the batch.

2. The read completion handling routine checks if a DMA read is complete. If so, it
scans the batch of entries using nic_own function. If the next entry is NIC owned, it
advances read_ready; otherwise, it updates the read_start pointer to point at this entry;
consequently, the DMA read routine will reissue a DMA read from this entry.

3. The write scanning routine checks the entry at write_local using cpu_own function, and
advances write_local when the entry is CPU owned.

4. The DMA write routine issues a DMA write on a batch of entries that are CPU owned,
and advances the write_start pointer to the end of the batch.

5. The write completion handling routine advances the write_finish pointer to the end of
the batch when a DMA write is complete.

The read and write completion handling routines are also responsible for handling failures
(e.g., a DMA command is dropped because the command queue is full, or an operation takes
much longer than the threshold). We use a configurable number of dedicated NIC cores
(manager threads) to execute the runtime. Each core manages a non-overlapping subset of
queues.

Other Optimizations

Instead of making the runtime thread changes states of entries from wvalid to modified one-
by-one by calling cpu_own, we keep track of the count of CPU own entries in each batch.
When NIC worker threads call access_done, they atomically increment the count. With this,
the runtime thread can check if the count is equal the number of total entries in the batch.
If equal, the runtime issues a DMA write.

Another optimization is to reduce the CPU-to-NIC communication for NIC-to-CPU
queues. Recall that for a NIC-to-CPU queue, we still need to perform DMA reads from
CPU memory to obtain the status fields of queue entries modified by the CPU. This in-
creases the traffic of DMA operations significantly. To reduce the number of DMA reads, we
create a special notification queue that sends a notification message from CPU to NIC when
CPU dequeues half entries from any queue. When the NIC runtime receives a notification
message, it changes the states of the half entries of the notified queue from wnvalid to valid,
skipping DMA reads entirely.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 87

3.7 Evaluation

FLOEM is open-source and availabe at github.com/mangpo/floem. We ran experiments
on two small-scale clusters to evaluate the benefit of offloading on servers with different
generations of CPUs: 6-core Intel X5650 in our Westmere cluster, and 12-core Intel E5-2680
v3 in our Sandy Bridge cluster (more powerful). Each cluster had four servers; two were
equipped with Cavium LiquidlO NICs, and the others had Intel X710 NICs. All NICs had
two 10Gbps ports.

We evaluated CPU-only implementations on the servers with the Intel X710 NICs, using
DPDK [4] to send and receive packets bypassing the OS networking stack to minimize over-
heads. We used the servers with the Cavium LiquidlO NICs to evaluate implementations
with NIC offloading. The Cavium LiquidIO has a 12-core 1.20GHz cnMIPS64 processor, a set
of on-chip/off-chip accelerators (e.g., encryption/decryption engines), and 4GB of on-board
memory.

Programming Abstraction

We implemented in FLOEM two complex applications (key-value store and real-time data
analytics) and three less complex network functions (encryption, flow classification, and
network sequencer).

Hypothesis 1 FLOEM lets programmers easily explore various offloading strategies to im-
prove application performance.

The main purpose of this experiment is to demonstrate that FLOEM makes it easier to
explore alternative offloading designs, not to show when or how one should or should not
offload an application to a NIC.

For the complex applications, we started with a CPU-only solution as a baseline by
porting parts of an existing C implementation into FLOEM. Then, we used FLOEM to obtain
a simple partition of the application between the CPU and NIC for the first offload design.
In both case studies, we found that the first offloading attempt was unsuccessful because
an application’s actual performance can greatly differ from a conceptual estimate. However,
we used FLOEM to redesign the offload strategy to obtain a more intelligent and higher
performing solution, with minimal code changes, and achieved 1.3-3.6x higher throughput
than the CPU-only version.

For the less complex workloads, FLOEM let us quickly determine whether we should
dedicate a CPU core to handle the workload or just use the NIC and save CPU cycles
for other applications. By merely changing FLOEM’s device mapping parameter, we found
that it was reasonable to offload encryption and flow classification to the NIC, but that
the network sequencer should be run on the CPU. The rest of this section describes the
applications in our experiment in greater detail.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 88

CPU-only —— cache-WB-#3
Split CPU-NIC cache-WB-#4 mmm
cache-WT-#2 =21 cache-WB-#5
cache-WB-#1 C—1 cache-WB-#6 I
cache-WB-#2 /3
,m\ T T
2 7+ — _ |
G 6f
g
o 5r
(]
= 4t] 7
U //
8 3 B /
a 2f %
% L/ /;
3 1f ? ==
£ vl g
S Ky K
0 - <

Westmere Sandy Bridge

Figure 3.14: Throughput per CPU core of different implementations of the key-value store.
WB = write-back, WT = write-through. #N in “cache-WB-#N” is the configuration num-
ber. Table 3.2 shows the cache sizes of the different configurations and their resulting hit
rates.

Version Obtained From | Effort (loc) | Details
Existing N/A 1708 Expert-written C program
CPU-only Existing replace 538 | Refactor C program into FLOEM elements.
with 334
Split CPU-NIC CPU-only add 296 Create queues. NIC remotely allocates items
on CPU memory.
Caching CPU-only add 43 Create a cache. Assign key, keylen, val, vallen.
NIC caching Caching add 62 Create queues and segments.

Table 3.1: Effort to implement key-value store. The last column describes specific modifi-
cation details other than creating, modifying, and rewiring elements. As a baseline, code
relevant to communication on the CPU side alone was 240 lines in a manual C implementa-
tion.

Case Study I: Key-Value Store

In this case study, we used one server to run the key-value store and another to run a client
generating workload, communicating via UDP. The workload consisted of 100,000 key-value
pairs of 32-byte keys and 64-byte values, with the Zipf distribution (s = 0.9) of 90% GET
requests and 10% SET requests, the same workload used in FlexNIC [85]. We used a single
CPU core with a NIC offload (potentially with multiple NIC cores); this setup was reasonable
since other CPU cores may be used to execute other applications simultaneously. Figure 3.14
shows the measured throughput of different offloading strategies, and Table 3.1 summarizes
the implementation effort.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 89

Config. HI | #2 | #3 | #4 | #5 | #6 | #2 (WT)
of buckets | 21° | 215 [215 [oI5 [o4 | 9ol4 21°
of entries 00 5 2 1 1 1 5
hit rate (%) | 100 | 97.2 | 88.4 | 75.3 | 65.0 | 55.2 90.3

Table 3.2: The sizes of the cache (# of buckets and # of entries per bucket) on the NIC
and the resulting cache hit rates when using the cache for the key-value store. All columns
report the hit rates when using write-back policy except the last column for write-through.
oo entries mean a linked list.

CPU-only (Figure 3.1(a)): We ported an existing C implementation, which runs
on a CPU using DPDK, into FLOEM except for the garbage collector of freed key-value
items. This effort involved converting the original control-flow logic into the data-flow logic,
replacing 538 lines of code with 334 lines. The code reduction came from using reusable
elements (e.g., from_net and to_net), so we did not have to set up DPDK manually.

CPU-NIC split (Figure 3.1(b)): We tried a simple CPU-NIC partition, following
the offloading design of FlexKVS [85], by modifying 296 lines of the CPU-only version;
this offload strategy was carefully designed to minimize computational cycles on a CPU. It
required many changes because the NIC (create_item element) creates key-value items that
reside in CPU memory. Unexpectedly, this offload strategy lowered performance (the second
bar). Profiling the application revealed a major bottleneck in the element that prepares a
GET response on the NIC. The element issued a blocking DMA read to retrieve the item’s
content from host memory. This DMA read was not part of queue Q2 because that queue sent
only the pointer to the item, not the item itself. Therefore, the runtime could not manage
this DMA read; as a result, this strategy suffered from this additional DMA cost.

NIC caching (Figure 3.1(c)): We then used FLOEM to explore a completely different
offload design. Since the Cavium NIC has a large amount of local memory, we could cache
a signification portion of the key-value store on the NIC. This offload design, previously
explored, was shown to have high performance [94]. Therefore, we modified the CPU-only
version by inserting the caching construct (43 lines of code) as well as creating segments and
inserting queues (62 lines of code). For a baseline comparison, code relevant to communica-
tion on the CPU side alone was already at 240 lines in a manually-written C implementation
of FlexKVS with a software NIC emulation. This translated to fewer than 15 lines of code in
FLOEM. These numbers show that implementing a NIC-offload application without FLOEM
requires significantly more effort than with FLOEM.

Regarding performance, the third bar in Figure 3.14 reports the throughput when using
a write-through cache with 2% buckets and five entries per bucket, resulting in a 90.3% hit
rate. According to the result, the write-through cache did not provide any benefit over the
CPU-only design, even when the cache hit rate was quite high. Therefore, we configured
the caching construct to use a write-back policy (by changing the cache policy parameter)
because write-back generally yields higher throughput than write-through. The remaining
bars show the performance when using a write-back cache with different cache sizes, resulting
in the different hit rates shown in Table 3.2. This offloading strategy improved throughput

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 90

over the CPU-only design by 2.8-3.6x on Westmere and 28-60% on Sandy Bridge when the
hit rate exceeded 88% (configuration #1-3).

Notice that at high cache hit rates, the throughput for this offload strategy was almost
identical on Westmere and Sandy Bridge regardless of the CPU technology. The NIC es-
sentially boosted performance on the Westmere server to be on par with the Sandy Bridge
one. In other words, an effective NIC offload reduced the workload’s dependency on CPU
processing speed.

Case Study: Distributed Real-Time Data Analytics

Distributed real-time analytics is a widely-used application for analyzing frequently changing
datasets. Apache Storm [1], a popular framework built for this task, employs multiple types
of workers. A worker thread executes one worker. Spout workers emit tuples from a data
source; other workers consume tuples and may emit output tuples. De-multiplexing threads
route incoming tuples from the network to local workers. Multiplexing threads route tuples
from local workers to other servers and perform simple flow control. Our specific workload
ranked the top n users from a stream of Twitter tweets. In this case study, we optimized
for throughput per CPU core. Figure 3.15 and Table 3.3 summarize the throughput and
implementation effort of different strategies, respectively.

CPU-only: We ported demultiplexing, multiplexing, and DCCP flow-control from
FlexStorm [85] into FLOEM but kept the original implementation of the workers as an exter-
nal program. We used callable segments to define functions inqueue_get and outqueue_put
for workers (in the external program) to obtain a task from the demultiplexer and send a
task to the multiplexer (in FLOEM). This porting effort involved replacing 1,192 lines of
code with only 350 lines. The code reduction here was much higher than in the key-value
store application because FlexStorm’s original implementation required many communica-
tion queues, which were replaced by FLOEM queues. The best CPU-only configuration that
achieved the highest throughput per core used three cores for three workers (one spout, one
counter, and one ranker), one core for demultiplexing, and two cores for multiplexing.

Split CPU-NIC: As suggested in FlexNIC, we offloaded (de-)multiplexing and flow
control to the NIC, by annotating parameter device=NIC of the segments that run this com-
putation (one line of code change). This version, however, lowered throughput slightly
compared to the CPU-only version.

Redesigned CPU-NIC: The split CPU-NIC version can be optimized further. A
worker can send its output tuple to another local worker or a remote worker over the network.
For the former case, a worker sends a tuple to the multiplexer on the NIC, which in turn
forwards it to the target worker on the CPU. Notice that this CPU-NIC-CPU round-trip
is unnecessary. To eliminate this communication, we created bypass queues for workers to
send tuples to other local workers without involving the multiplexer.

To do this, we had to modify only a few lines of code in the callable segment for
outqueue_put function as follows.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 91

1.6
v
g 14t
o
= 12t
g
S 1t
z
(@] 0.8
9]
e 06|
5
2 o4t
(@)}
=}
2 o02F
N
*_
0

%

0%
XK

P EEIIZERZL

Westmere Sandy Bridge

CPU-only C—

Redesigned CPU-NIC =

Figure 3.15: Throughput per CPU core of different Storm implementations

Version Obtained From | Effort (loc) | Details
Existing N/A 2935 Expert-written C program
CPU-only Existing replace 1192 | Refactor C program into
with 350 FrLogMelements.
Split CPU-NIC CPU-only modify 1 Change device parameter.
Redesigned Split CPU-NIC add 23 Create bypass queues.

Table 3.3: Effort to implement Storm. The last column describes specific modification details
other than creating, modifying, and rewiring elements.

class outqueue_put(CallableFunction):

def impl(self):

+ 4+ 4+

self.inp >> outqueue_eng

self.inp >> local_or_remote
local_or_remote.local >> get_worker_core >> bypass_enq
local_or_remote.send >> outqueue_enq

With this slight modification, we achieved 96% and 75% higher throughput than the CPU-
only design on the Westmere and Sandy Bridge cluster, respectively.

Other Applications

The following three applications are common network function tasks. Because of their sim-
plicity, we did not attempt to partition them across the CPU and NIC. Figure 3.16 reports
throughput when using one CPU core on a Sandy Bridge server or offloading everything to
the Cavium NIC. In our experiment, we used a packet size of 1024 bytes for encryption and
network sequencer, and 80 bytes for flow classification.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 92

10 ' ' T] CPU-AES-NI C—3
CPU C—1
w NIC C—3
2 s8f] |
g
9
5 6l .
[eX
2 |
[®)]
=}
e a4t -
e
|—
I
B 27 I
0

AES Flow Seq

Figure 3.16: Throughput of AES encryption, 3DES encryption, flow classification, and net-
work sequencer running on one CPU core and the LiquidlO NIC. ‘CPU-AES-NT’ is running
on one CPU core with AES-NI.

Encryption is a compute-intensive stateless task, used for Internet Protocol Security. In
particular, we implemented AES-CBC-128. We wrote two CPU versions: (1) using Intel
Advanced Encryption Standard New Instructions (AES-NI), and (2) without AES-NI, which
is available in only some processors. NIC Offloading improved throughput by 2.5x and 17.5x
with and without AES-NI on CPU, respectively. Using AES-NI improved performance on
the CPU but to a lesser degree than utilizing all encryption co-processors on the NIC. This
result would be difficult to predict without an empirical test.

Flow classification is a stateful task that tracks flow statistics. We categorized flows using
the header 5-tuple and used a probabilistic data structure (a count-min sketch) to track the
number of bytes per flow. This application ran slightly faster on the NIC. Therefore, it
seems reasonable to offload this task to the NIC if we want to spare CPU cycles for other
applications.

Network sequencer orders packets based on predefined rules. It performs simple com-
putation and maintains limited in-network state. This function has been used to accelerate
distributed system consensus [97] and concurrency control [96]. Our network sequencer was
82% faster on the CPU core than on the NIC. Application throughput did not scale with
the number of cores because of the group lock’s contention; the number of locks acquired
by each packet was 5 out of 10 on average in our synthetic workload, making this task in-
herently sequential. Therefore, using one fast CPU core yielded the best performance. We
also tried running this program using multiple CPU cores, but throughput stayed the same
as we increased the number of cores. On the NIC, using three cores offered the highest
performance.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 93

In summary, even for simple applications, it is not obvious whether offloading to the NIC
improves or degrades performance. Using FLOEM lets us answer these questions quickly and
precisely by simply changing the device parameter of the computation segment to either
CPU or NIC. Comparing cost-performance or power-performance is beyond the scope of this
paper. Nevertheless, one can use FLOEM to experiment with different configurations for a
specific workload to optimize for a particular performance objective.

Logical-to-Physical Queue Mapping

Hypothesis 2 Logical-to-physical queue mapping lets programmers implement packet steer-
ing, packet ordering, and different degrees of resource sharing.

Packet steering. Storm, the second case study, required packet steering to the correct
input queues, each dedicated to one worker. This was done by creating a queue with multiple
physical instances and by setting state.qid according to an incoming tuple’s type.

Packet ordering. The write-back cache implementation required in-order delivery be-
tween CPU and NIC to guarantee consistency (see Section 3.4).

Resource sharing. For the split NIC-CPU version of the key-value store, sending both
GET and SET requests on separate physical queues offered 7% higher throughput than
sharing the same queue. This is because we can use a smaller queue entry’s size to transfer
data for GET requests. In contrast, for our Storm application, sharing the same physical
output queue between multiple workers yielded 16% higher throughput over separate dedi-
cated physical queues. Since some workers infrequently produce output tuples, it was more
efficient to combine tuples from all workers to send over one queue. Hence, it is difficult to
predict whether sharing or no sharing is more efficient, so queue resource sharing must be
tunable.

Inferred Data Transfer

Hypothesis 3 Inferred data transfer improves performance relative to sending an entire
packet.

In this experiment, we evaluated the benefit of sending only a packet’s live fields versus
sending an entire packet over a queue. We measured the throughput of transmitting data
over queues from the NIC to CPU when varying the ratio of the live portion to the entire
packet’s size (live ratio), detailed in Table 3.4. The sizes of live portions and packets were
multiples of 64 bytes because performance was degraded when a queue entry’s size was not
a multiple of 64 bytes, the size of a CPU cache line. We used numbers of queues and
cores that maximized throughput. As shown on the table, sending only live fields improved
throughput by 1.2-3.1x. Additionally, we evaluated the effect of this optimization on the
split CPU-NIC version of the end-to-end key-value store, whose queues from NIC to CPU

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 94

Live ratio 1/5 | 1/4 | 1/3 | 1/2 | 2/3 | 3/4 | 4/5
Live size (B) 64 64 | 64 | 64 | 128 | 192 | 256
Total size (B) | 320 | 256 | 192 | 128 | 192 | 256 | 320

Speedup J.1x | 256x | 2x | 1bx | 1.3x | 1.2x | 1.2x

Table 3.4: Speedup when sending only the live portions when varying live ratios from a
micro-benchmark. Sizes are in bytes (B).

without sync layer C—1
with sync layer C—

2 14 m i o -
g 124 i
[®)]
3 10 A :
S 8- L
©
g 6 -
© - -
g 4
[9) 2 -
0 misnisniEniEninninnSnnNEn
n o In. 4 K
/7‘?(,@ /7‘?(,@ /)Q(/@ /)Qo@/rV S C/VV S C/VV S C'(’p S e lo,
05 Ve Yo, Y0 5 Sch Och Fch, 9k
207 YR TI6 Sy S, S S

Figure 3.17: Effect of the queue synchronization layer. Throughput is normalized to that
without the sync layer.

transfer packets with a live ratio of 1/2. The optimization improved the throughput of this
end-to-end application by 6.5%.

Queue synchronization layer

Hypothesis 4 The queue synchronization layer enables high-throughput communication
queues.

We measured the throughput of three benchmarks. The first benchmark performed a
simple packet forwarding from the NIC to CPU with no network activity, so its performance
purely reflects the rate of data transfer over the PCle bus rather than the rate of sending
and receiving packets over the network. We used packet sizes of 32, 64, 128, and 256 bytes.
The other two benchmarks were the write-back caching version of the key-value store and
the redesigned CPU-NIC version of Storm.

Figure 3.17 displays the speedup when using the sync layer versus using primitive blocking
DMA operations without batching (labeled “without sync layer”). The sync layer offered
9-15x speedup for pure data transfers in the first benchmark. Smaller packet sizes showed
a higher speedup; this is because batching effectiveness increases with the number of packets
in a batch. For end-to-end applications, we observed a 7.2-14.1x speedup for the key-value

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 95

store and a 3.7x speedup for Storm. Note that the sync layer is always enabled in the other
experiments. Hence, it is crucial for performance of our system.

Compiler Overhead

Hypothesis 5 The FLOEM compiler has negligible overhead compared to hand-written
code.

We compared the throughput of code generated from our compiler to hand-optimized
programs in C. To measure the compiler’s overhead on the CPU, we ran a simple echo pro-
gram, Storm, and key-value store. The C implementations of Storm and key-value store
were taken from FlexStorm and one of FlexKVS’s baselines [85]; these implementations are
highly-optimized and perform better than the standard public implementations of Storm
and memcached. On the NIC, we compared a simple echo program, encryption, flow classifi-
cation, and network sequencer. On average, the overhead was 9% and 1% on CPU and NIC,
respectively. We hypothesize that the higher overhead on the CPU was primarily because
we did not implement computation batching [86, 152], which was used for hand-optimized
programs.

3.8 Discussion and Future Work

Multi-message packets. FLOEM can support a packet whose payload contains multiple
requests via Batcher and Debatcher elements. Given one input packet, Debatcher invokes
its one output port n times sequentially, where n is the number of requests in the payload.
Batcher stores the first n — 1 packets in its state. Upon receiving the last token, it sends
out n packets as one value. The Debatcher element can inform the value of n to the Batcher
element via the per-packet state. One can also take advantage of this feature to support
computation batching, similar to Snap [152].

Multi-packet messages and TCP. Exploring the TCP offload with FLOEM is future
work. FLOEM supports multi-packet messages via Batcher and Debatcher elements and could
be used together with a TCP offload on the NIC, but our applications do not use TCP.

Shared data structures. In FLOEM, queues and caches are the only high-level abstrac-
tions for shared data structures between the NIC and CPU. However, advanced developers
can use FLOEM to allocate a memory region on the CPU that the NIC can access via DMA
operations, but they are responsible for synchronizing data and managing the memory by
themselves.

Automation. Automatic program partitioning was among our initial goals, but we learned
that it cannot be done entirely automatically. Different offloading strategies often require
program refactoring by rewriting the graph and even graph elements. These program-specific

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 96

changes cannot be done automatically by semantics-preserving transformation rules. There-
fore, we let programmers control the placement of elements while refactoring the program
for a particular offload design. However, FLOEM would benefit from and integrate well with
another layer of automation, like an autotuner or a runtime scheduler, that could select
parameters for low-level choices (e.g., the number of physical queues, the number of cores,
and the placement of each element) after an application has been refactored.

Other SmartNICs. The current FLOEM prototype targets Cavium LiquidIlO but can be
extensible to other SmartNICs that support C-like programming, such as Mellanox BlueField
[104] and Netronome Agilio [6]. However, FPGAs [36, 105, 177] require compilation to
a different execution model and the implementation of bodies of elements in a language
compatible with the hardware.

3.9 Related Work

Packet processing frameworks. The FLOEM data-flow programming model is inspired
by the Click modular router [111], a successful framework for programmable routers, where
a network function is composed from reusable elements [111]. SMP Click [40] and Route-
Bricks [50] extend Click to exploit parallelism on a multi-processor system. Snap [152] and
NBA [86] add GPU offloading abstractions to Click, while ClickNP [95] extends Click to
support joint CPU-FPGA processing. Dragonet, a system for a network stack design, auto-
matically offloads computations (described in data-flow graphs) to a NIC with fixed hardware
functions rather than programmable cores [141, 142].

Other packet processing systems adopt different programming models. PacketShader [70]
is among the first to leverage GPUs to accelerate packet processing in software routers.
APUNet [58] identifies the PCle bottleneck between the CPU and GPU and employs an
integrated GPU in an APU platform as a packet processing accelerator. Domain-specific
languages for data-plane algorithms, including P4 [26] and Domino [144], provide even more
limited operations.

Overall, programming abstractions provided by existing packing processing frameworks
are insufficient for our target domain, as discussed in Section 3.2.

Synchronous data-flow languages. Synchronous data-flow (SDF) is a data-flow pro-
gramming model in which computing nodes have statically known input and output rates
[91]. Streamlt [157] adopts SDF for programming efficient streaming applications on mul-
ticore architectures. Flextream [72] extends Streamlt with dynamic runtime adaptation
for better resource utilization. More recently, Lime [73] provides a unified programming
language based on SDF for programming heterogeneous computers that feature GPUs and
FPGAs. Although some variations of these languages support dynamic input/output rates,
they are designed primarily for static lows. As a result, they are not suitable for network
applications, where the flow of a packet through a computing graph is highly dynamic.

CHAPTER 3. FLOEM: PROGRAMMING NIC-ACCELERATED APPLICATIONS 97

Systems for heterogeneous computing. Researchers have extensively explored pro-
gramming abstractions and systems for various application domains on various heteroge-
neous platforms [23, 29, 102, 113, 119, 132, 133]. FLOEM is unique among these systems
because it is designed specifically for data-center network applications in a CPU-NIC en-
vironment. In particular, earlier systems were intended for non-streaming or large-grained
streaming applications, whose unit of data in a stream (e.g., a matrix or submatrix) is much
larger than a packet. Furthermore, most of these systems do not support a processing task
that maintains state throughout a stream of data, which is necessary for our domain.

3.10 Conclusions

Developing NIC-accelerated network applications is exceptionally challenging. FLOEM aims
to simplify the development of these applications by providing a unified framework to im-
plement an application that is split across the CPU and NIC. It allows developers to quickly
explore alternative offload designs by providing programming abstractions to place com-
putation to devices; control mapping of logical queues to physical queues; access fields of
a packet without manually marshaling it; cache application state on a NIC; and interface
with an external program. Our case studies show that FLOEM simplifies the development
of applications that take advantage of a programmable NIC, improving the key-value store’s
throughput by up to 3.6x.

98

Chapter 4

GreenThumb: Superoptimization
Framework

4.1 Motivation

Code optimization is more important today than ever before. For example, CERN’s internal
study demonstrated that using a highly optimizing compiler with profile-guided optimiza-
tions increased the power efficiency of its data center by 65% [76]. Another study shows that
loop optimizations alone improved energy consumption of applications running on battery-
operated portable devices by up to 10 times [83]. Code optimizers may also reduce costs
of devices by enabling developers to select lower-power computing resources and smaller
memory [32].

Developing a code optimizer still remains a challenging problem. The task of imple-
menting a code optimizer is further exacerbated by the development of different instruc-
tion set architectures (ISAs) for different types of processors. For example, ARM alone
has over 30 variants of ISAs [167], and new architectures are constantly being developed
(156, 65, 52, 62, 128, 175, 108]. Even when compiling for widely-used architectures, like
x86 or ARM, compilers may miss some optimizations that human experts can recognize.
Many of these optimizations are local and very specific to the architectures. Although the
expert developers can specify peephole optimizations in the compilers to perform these local
rewrites, they may still miss some optimizations, and their rewrite rules may be buggy [101].

Superoptimization, introduced by Massalin [103], is a program optimization technique
that searches for a correct and optimal program given an optimality criterion, instead of
relying on rewrite rules. Thus, a superoptimizer can be used for automatically generating

Materials in this chapter are based on work published as (1) Phothilimthana et al., “Scaling up Super-
optimization,” in proceedings of ASPLOS 2016 [125], and (2) Phothilimthana et al, “GreenThumb: Super-
optimizer Construction Framework,” in proceedings of CC 2016 [124].

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 99

peephole optimization rules for compilers [19, 63] or optimizing small sequences of instruc-
tions produced by compilers on the fly [136, 137, 7, 135]. With this technique, we can avoid
buggy human-written rewrite rules and potentially discover even more optimizations. Note
that superoptimization subsumes instruction selection, instruction scheduling, and local reg-
ister allocation. A superoptimizer is shown to optimize a complex multiplication kernel and
offer 60% speedup over an optimizing compiler [136].

4.2 Contributions

Scalable Superoptimization

Our first goal is to develop a search technique that can synthesize optimal programs more
consistently and faster than existing techniques. We experimented with the most common
superoptimization search techniques: symbolic (SAT-solver-based) [148, 160], enumerative
[103, 63, 166, 19, 21, 57, 162], and stochastic [136, 137] search. A symbolic search could
synthesize arbitrary constants, but it was the slowest. An enumerative search synthesized
relatively small programs the fastest, but it could only synthesize up to three ARM in-
structions within an hour. A sliding window decomposition [121] could scale symbolic and
enumerative search to larger programs, but it does not guarantee the optimality of the final
output programs. A stochastic search could synthesize larger programs compared to sym-
bolic and enumerative search, but it sometimes could not find the optimal program. This is
because a stochastic search can get stuck at local minima.

We develop LENS, an enumerative search algorithm that rapidly prunes away invalid
candidate programs. It employs a bidirectional search to prune the search space from both
forward and backward directions. It also refines the abstraction under which candidates are
considered equivalent selectively via an incremental use of test cases. In our experiment,
these pruning techniques increase the number of benchmarks the enumerative search can
solve from 11 to 20 (out of 22) and offer 11x reduction on the search time on average.

Although LENS performs better than the existing enumerative algorithms, it still cannot
synthesize ARM code with more than five instructions or GreenArrays (GA) [65] code with
more than 12 instructions. To scale this search algorithm to synthesize larger code, we
introduce a context-aware window decomposition. With this decomposition, our enumerative
search can synthesize an optimal (or nearly optimal) ARM program of 16 instructions within
10 minutes.

Optimizing code may require creating new constants or transforming the code fragment
globally, which cannot be achieved by the enumerative search with the window decomposi-
tion. Thus, we compensate these limitations by combining stochastic and symbolic search
into our superoptimizer, yielding a cooperative superoptimizer.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 100

Retargettable Superoptimization

Superoptimization is not commonly used today because implementing a superoptimizer for
a new ISA is laborious, and the optimizing process can be slow. First, one must implement a
search strategy for finding a candidate program that is optimal and correct on all test inputs,
as well as a checker that verifies the equivalence of a candidate program and a reference
program when the candidate program passes on all test inputs. The equivalence checker
is usually constructed using bounded verification, which requires translating programs into
logical formulas. This effort requires debugging potentially complex logical formulas. Second,
it is equally, if not more difficult to develop a search technique that scales to program
fragments larger than ten or more instructions.

Hence, we develop GREENTHUMB, an extensible framework for constructing superopti-
mizers. Unlike existing superoptimizers, GREENTHUMB is designed to be easily extended
to a new target ISA. Specifically, extending GREENTHUMB to a new ISA involves merely
describing the ISA—a program state representation, a functional ISA simulator, and a per-
formance model—and some ISA-specific search utility functions. The framework provides
our scalable cooperativesearch strategy that can be reused for any ISA. GREENTHUMB is
available at github.com/mangpo/greenthumb.

4.3 Overview of Search Strategy and Insights

Figure 4.1 displays the interaction between the LENS algorithm (Section 4.4), the context-
aware window decomposition (Section 4.5), and the cooperation of multiple search instances
(Section 4.6), which can either employ LENS or different search techniques. The terminology
used in this chapter is defined as follows.

e A program is a sequence of instructions without loops and branches.
e A reference program is a program to be optimized.

e A program state contains values in the locations of interest such as registers, stacks,
and memory.

A test input is a program state that is used for checking correctness (being equivalent
to a reference program).

A test output is an expected program state after executing a candidate program on a
given test input. A pair of a test input and a test input constitutes a test case.

An equivalence verification is a process to verify if a candidate program is equivalent
to a reference program on all inputs using a constraint solver.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 101

e
";f;;rgg:f Shared Data
get best | 4 update @ Cooperative
program | | best program Search Instances
vl s
@ > | instl P, get @
inst2 e reference
Window | 17583 = - program LENS
inst4 —P i
decom- e P, ref rifum J (or stochastic/
osition |, ... opfimize symbolic search
p inst6 . .. program Y)
inst7 P/w.\/_‘
L
L

Figure 4.1: Interaction between the main components in our superoptimizer

Search Technique

A search technique searches for a program that is semantically equivalent to a reference
program but faster according to a given performance model. This section provides our
insights on how we design our search technique.

Problem Formulation

Let pspec be a program we want to optimize. The set of test inputs I = (i1, ...,7,) and test
outputs O = (oy, ..., 0,) can be generated. Each test case (i, o) is an input-output pair such
that pgpec(ix) = or. We formalize the superoptimization problem as a graph search problem.
A node u in the graph represents a vector of n program states. The initial node s represents
I, and the goal node t represents O. There is an edge from node u — representing program
states (z1,...,2,)—to node v — representing program states (yi, ..., y,) — labeled with an
instruction inst, if inst(u) = v, an abbreviation for A!_, inst(z;) = y;. We use u ~» v to
denote a set of all paths from u to v, which represents a set of instruction sequences. A
program that passes all n test cases corresponds to a path from s to t. Therefore, the
superoptimization problem reduces to searching for a path p from s to ¢ such that cost(p) <
cost(pspec). We use g @ r to denote concatenation of programs ¢ and 7.

Enumerative Search Algorithms

In this section, we illustrate the differences between existing enumerative algorithms and the
LENS algorithm. Assume we want to synthesize an ARM program of four instructions using
only two registers. A program state is represented by <r@,r1>. Figure 4.2 shows the search
graphs constructed by different algorithms, which will be explained in detail.

CHAPTER 4. GREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 102

Depth 0 1 2 3 4

Sy

restart

eee \O>Ot1 <L->

Depth 0 1 2

<4,4>
o
<«

w
EN

sub 0, r0, r1
e (O)— Otl
7> <3 Isrr0, 10, 3 <1,->
510
<4,0> b
1
a1 8

refine
Gy

subrl, 10, rl, Isl 1

clzr0,. 0y~ subr0.r0.rl o~ O t
~ ~ 110,10, 3 2
<1,2> <3,2> <1,2> <0,->

0
<3,2>

(b) Selective refinement via incremental use of test cases

clzrl, r

forward backward
| A
[| | !
Depth 0 1 2 3 4
e

<(\0

refine a; €1

!

A
<1,2> ’ , <3,2> <1,-> <0,->

(c) Bidirectional strategy

subrl, rO, rl, sl 1 u,

S, clzr0, r0

Figure 4.2: Search graphs of ARM programs of length 4. In (b) and (c), the highlighted paths
are programs that pass the test cases. Assume programs are executed on 4-bit machine.

CHAPTER 4. GREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 103

!

l
=
]

"] q | |||q ; % ::—
\ [1 T —_
1 test case 2 test cases k test cases
(a) Existing strategy
H
L —| q Illq
1 test case 2 test cases k test cases

) Selective refinement via incremental use of test cases

J o

Illq

1 test case 2 test case k test cases

(c) Bidirectional strategy

Figure 4.3: Division of search space of length d programs. Yellow boxes represent feasible
equivalence classes.

Existing Algorithms. Enumerative algorithms enumerate all possible programs whose
cost are less than cost(pspe.) and search for a program that is equivalent to pspe.. The
existing successful enumerative program synthesizers [21, 11, 162, 57, 10] apply an equivalence
class concept, grouping programs into equivalence classes based on their behaviors on a set
of test inputs. The search enumerates all possible behaviors, which can be many orders of
magnitude fewer than all possible programs. Grouping programs based on a set of test cases
is effectively abstracting the search space. The fewer the test cases, the more abstract the
equivalence classes are; each equivalence class may contain more programs that are, in fact,
not equivalent. Node u in the search graph essentially corresponds to the equivalence class
containing programs s ~» u, which have the same behavior according to the set of inputs I.

The SIMD synthesizer [21] and the SyGus enumerative solver [11] are enumerative syn-
thesizers that solve similar problems to ours. Both synthesizers use equivalence classes in a
similar way to prune the search space. Here, we will explain their pruning strategy using
our new formulation. Let p be a program prefix from s to u. The algorithm searches for a

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 104

program postfix ¢ such that ¢(u) = t. If there is no such ¢, the search can prune all program
prefixes in the same equivalence class as p away. The top part of Figure 4.2(a) illustrates
this idea. s; ~~ ¢; corresponds to programs in the same equivalence class. The algorithm
only needs to explore the subgraph rooted at ¢; once to prune away all paths from s; to ¢;.

We observed two main sources of inefficiency in the existing algorithms. The first source
of inefficiency comes from restarts. A restart happens when the search finds a feasible
program, a program that passes the current set of test cases but is not equivalent to pgpec;
the abstraction is too coarse. The counterexample generated by a constraint solver is added
to the test cases to refine the abstraction, and the search restarts building a new graph from
scratch with respect to the updated I and O. Upon restarting, the search forgets which
programs it has already pruned away, so it revisits them again. Figure 4.2(a) illustrates
that the search revisits programs from s; to ¢; in the new graph. Conceptually, when a
new counterexample is found, the algorithm redivides the search space entirely as shown in
Figure 4.3(a). The figure visualizes the space of all programs of size d (four in the example
in Figure 4.2) divided into equivalence classes.

The second source of inefficiency comes from using more test cases than necessary. Con-
sider programs p; and ps whose behaviors are the same on the first test case but different
on the second one. If there is no ¢ such that (p; ® ¢)(I[1]) = O[1] with respect to the
first test case, the search can also prune away p,. However, since p; and p, are not in the
same equivalence class because of the second test case, the search does not prune away ps.
Figure 4.2(a) illustrates that the additional test case splits programs s; ~ ¢; into two equiv-
alence classes sy ~~ ¢o and sy ~» dy, so the search has to traverse the same subgraphs at ¢y
and dy separately, to find out that both of them cannot reach t,.

Lens Algorithm. Our enumerative search does not have the aforementioned inefficiencies.
It does not restart the search and uses just enough test cases to prune the search space.
More specifically, when a counterexample is found, we build a new search graph according
to the next test case only on the programs that pass all previous test cases, as shown in
Figure 4.2(b). The search graph of test case 2 only includes programs that pass test case
1 (the highlighted paths in the search graph of test case 1). Therefore, we never revisit
programs from s; to ¢;. Conceptually, when we find a counterexample, we refine the search
by only subdividing the feasible equivalence class, as shown in Figure 4.3(b).

Additionally, we discover that when we search for a program of length d, we can in fact
direct the search to a feasible equivalence class without constructing the other equivalence
classes of programs of size d, as shown in Figure 4.3(c). This can be achieved through bidi-
rectional search, which builds the search graph from both s and ¢, as shown in Figure 4.2(c).

Context-aware window decomposition

A context-aware window decomposition scales search techniques that can solve relatively
small problems to larger problems without losing much optimality of the final solutions.

CHAPTER 4. GREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 105

The key idea is to inform the superoptimizer about the precise precondition and postcondi-
tion under which the optimized fragment will be executed. We harvest a precondition and
postcondition from a context—code surrounding the code to be optimized—and used them
to relax the correctness condition. The decomposition selects a random code fragment pgpe.
in a reference program and optimizes the fragment in the context of the prefix p,.. and the
postfix p,os (as depicted in Figure 4.1). This process repeats until none of the fragments
in the program can be optimized further. Consequently, this decomposition increases the
effective size of programs that the superoptimizer can synthesize.

Cooperative search

A cooperative superoptimizer runs multiple search instances of enumerative, stochastic, and
symbolic search. The superoptimizer exploits the strengths of all search techniques through
communication between search instances, exchanging the best programs they have discovered
so far.

40 _II _L_‘

L1
% 30 p
o
(8]
20 t symbolic ——
stoch_s ——
10 | stoch_o —— |
enum ——
0 COOPErative mm—
1 10 100 1000
Search time (s)
(a) Costs of best programs found over time
50
40
B 30 stoch_o
S 20 enum
10 stoch-=enum ©
0 enum->enum @

10 20 30 40 50 60 70 80 90 100
Search time (s)

(b) Trace to the best program found by cooperative search. Cir-
cles indicate communications between search instances.

Figure 4.4: Optimizing a sequence of GA instructions from a SHA-256 program. ‘stoch_s’
is stochastic search that starts from random programs. ‘stoch_o’ is stochastic search that
starts from the correct reference program.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 106

To demonstrate the effectiveness of the cooperative superoptimizer, we show how it op-
timized a GA code fragment from a SHA-256 program. According to Figure 4.4(a), the
cooperative superoptimizer was the only superoptimizer that found the best known code,
while being as quick as the stochastic superoptimizer. Although some of the other tech-
niques might seem better at the beginning, the cooperative superoptimizer eventually found
the best solution that the other techniques could not; the cooperation costs some overhead
but eventually pays off. Note that all supertoptimizers execute the same number of search
instances. The detailed descriptions of these five superoptimizers are in Section 4.8.

Figure 4.4(b) depicts how the cooperative superoptimizer arrived at the best solution.
A stochastic instance that started mutating from the correct reference program first found
a better solution, so it updated the best program shared between the search instances. An
enumerative instance took that newly updated program, applied the context-aware window
decomposition, and found two better solutions before another enumerative search instance
took the latest best program, applied window decomposition, and found the final best pro-
gram. Our experiment shows that the cooperative superoptimizer increased the number of
benchmarks in which the superoptimizer found best known solutions consistently from 23
to 29 (out of 32) over using the enumerative search alone. We define a superoptimizer as
consistent at solving a benchmark if it found best known solutions in all runs.

4.4 The Lens Algorithm

In Section 4.3, we outlined the LENS algorithm’s pruning strategies. For the sake of sim-
plification, we assumed that the size of the synthesized program was fixed a priori. The
complete description provided in this section explains how the algorithm simultaneously
grows the program size and refines the search.

Representation of Search Graphs

Each test case (iy, o) is associated with a forward search graph Fj of program prefixes of
length ¢r, and a backward search graph B, of program postfixes of length ¢g. The root s
of F}, is labeled with the input 7, and the root ¢, of By is labeled with the output o,. We
store F1, ..., F, in the nested map My such that Mpg[u;]us]...[u,] returns the set of programs
p of length ¢r such that p(iy) = uy,p(ia) = ug,...,p(in) = u,. For example, in the search
graphs in Figure 4.2(c), Mr|[(1,4)][(3,2)] maps to three programs:

1. sub r1, ro, rl, 1sl 1
2. clzr1, r1; clz ro, ro
3. clz ro, ro; clz ri1, ri

We use Progs(Mp) to refer to all programs stored inside M.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 107

Algorithm 2 Main search

1: n+1 > Number of test cases
2: EF 0, EB +~— 0

3: Pspec ReduceBitwidth(pspec)

4: cost < cost(pspec)

5: (I,0) < GenTest(pspec)

6: Mp < Init(I), Mp < Goal(O)

7: while true do

8

for all inst € Insts do > Searching Phase
9: (Mg, Mpg) < Connect(Mp, Mp,inst,1)
10: if Forward?({r,{p) then > Expanding Phase
11: Mp < EzpandForward(Mp), bp < (g + 1
12: else
13: Mp <+ EzpandBackward(Mp), g + g +1

The backward search graphs are stored differently, but to simplify the explanation of our
algorithm, let us assume that the backward search graph offers the same interface; there is
a map Mp such that Mp[ui|[us] ... [u,] returns the set of programs p of length (5 such that
p(ur) = o1, p(uz) = 09, ..., p(up) = 0,. Our efficient implementation of the backward search
graphs is described later in this section.

The Algorithm

Algorithm 2 displays our main algorithm. We first create one test case. Therefore, at the
beginning, we start the search from F; containing only sy, and By containing only ¢;. Then,
the main loop performs two actions—search and expand—in each iteration. The search
phase searches for programs of size {rp 4+ {5 + 1 that pass all test cases. When the search
phase is complete, the expand phase increases the size of programs we will be searching in
the next iteration by one. This process repeats until timeout.

The expanding phase (on line 10-13) increases the size of programs by expanding all leaf
nodes of either F} or By. Forward? is a heuristic function that decides whether to expand

forward or backward. In particular, we expand each leaf node u in F} by adding u 5 for
all inst € Insts, where Insts is a set of all possible instructions. Similarly, we expand each

leaf node v in B; backward by adding u 2% o for all inst € Insts.

The searching phase (on line 7-9) find programs that pass all n test cases by finding an
instruction that can connect leaf nodes in F}, ..., F,, to leaf nodes in By, ..., B, respectively.
The main algorithm calls Connect to find such programs. Connect(Mp, Mg, inst, k), shown
in Algorithm 3, searches for programs in Progs(Mp)®inst® Progs(Mpg) that pass test cases
k to n. It maintains the invariant that all programs in Progs(Mpg) @ inst @ Progs(Mpg) pass
all test cases 1 to kK — 1. This invariant is the key to refining the search only on a feasible
equivalence class.

After Fj, and B, are built, the loop on lines 12-15 searches for a leaf node u in Fj, and
v in By that can be connected by inst. keys(Mp) and keys(Mpg) on line 12 and 14 are sets

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 108

Algorithm 3 Connect and refine

Global variables: I,0,cost,n, pspec, Pspec
1: function CONNECT(MFp, Mp,inst, k)

2: if £ > n then > Pass all test cases
3: for all p e Mp,p’ € Mp do > Mp, Mp are sets of programs
4: if cost(p @ inst ® p') < cost then
5: Verify(p @ inst & p')
6: > Build search graph on test case k
T if Mp is not a map then > Mp is a set of programs
8: Mg <« BuildForward(Mg, I[k])
9: if Mp is not a map then > Mp is a set of programs
10: Mp <« BuildBackward(Mg, O[k])
11:
12: for all u € keys(Mp) do > Search for a connection
13: v + inst(u)
14: if v € keys(Mp) then > Find a connection, so refine the search
15: (Mplu], Mp[v]) < Connect(Mpu], Mg[v],inst, k + 1)

16: return (Mp, Mp)

17: function VERIFY(p)

18: if p = pspec then > Check via a constraint solver
19: for all p € IncreaseBitwidth(p) do

20: if p = popec then > Found a better program!
21: cost + cost(p)

22: yield p

23: else

24: n<n+1

25: (I[n],On]) + CounterExample(pspec, D)

of leaf nodes in F), and By. If inst can connect u to v, programs in Progs(Mp[u]) @ inst @
Progs(Mpg[v]) pass test case k, so the algorithm refines the search on Progs(Mp[u]) @ inst ®
Progs(Mg[v]) with the next test case k + 1. For our running example in Figure 4.2(c), we
find an instruction sub r@, r@, rl1 connecting u; and v; of test case 1, so we refine the
search on the highlighted programs s; ~» u; — vy ~ t;.

When we recursively call Connect, M will eventually become a set of programs instead
of a nested map, as well as Mpg. Lines 7-10 take care of building F}, for programs in Mg and
By, for programs in Mp. I} and By for each k are built once and saved on line 15 to be used
later when Connect is called with different insts. If there are no more test case left, lines
2-5 verify all programs in My @ inst & Mp against the reference program. Verify function
performs equivalence verification. If the two programs are not equivalent, an counterexample
is added to I and O on line 25. If they are equivalent, the algorithm yields the candidate
program and continues searching for solutions with lower costs until timeout.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 109

Implementation Details
Challenges of Backward Search

We have identified two main challenges in implementing backward search in a program
synthesizer. First, the synthesizer needs to evaluate an instruction backward; it needs an
inverse function for every instruction. Second, in the forward direction, an instruction inst
is a one-to-one function that map a state u to v. In contrast, in the backward direction, inst
is a one-to-many function that map the state v to a set of states, one of which is u.

Fortunately, we can mitigate these challenges by reducing bitwidth, using only four bits
to represent a value. First, we can avoid implementing an inverse emulator by constructing
an inverse function table for every instruction. We execute every instruction on all possible
combinations of 4-bit input arguments’ values and memorize them in the inverse table.
Second, the small bitwidth also reduces the number of states an instruction can transition
to in the backward direction. For example, in 32-bit domain, an inverse instruction add
transitions from one state to 232 states; in contrast, in 4-bit domain, the same instruction
only transitions to 2* states.

Reduced Bitwidth

Let bit be the actual bitwidth and bit be the reduced bitwidth, which is four in our case.
The reduced bitwidth not only enables the backward search but also allows us to initially
divide the search space more coarsely, which is desirable because the search graph even for a
single test can be very large. For example, an ISA with four 32-bit registers can have 2324
states and, hence, up to 2324 nodes in the graph.

Apart from the second-step equivalence verification (line 20 of Algorithm 3), the search
algorithm operates in the reduce-bitwidth domain. Therefore, we need both reduced-bitwitdh
and precise versions of a program state and an ISA emulator. We implement an emulator
that can be parameterized by bitwidth to instantiate both versions. For example, the precise
ARM emulator interprets instruction movt re@, 1 as writing 1 to the top 16 bits of a 32-bit
register. The 4-bit ARM emulator should interpret the same instruction as writing 1 to the
top 2 bits of a 4-bit register. Implementing a parameterizable program state is simple. We
just need to use a specified number of bits to represent each entry in a program state.

Additionally, we must have a way to convert programs between the two domains. In
particular, at the beginning, we convert the reference program p,.; from the precise domain
to the reduced-bitwidth domain (line 3 in Algorithm 2) by replacing constants appearing in
the program with their reduced-bitwidth counterparts. We replace a constant ¢ using the
following function a:

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 110

bit if shift?(c) A (¢ = bit)

bit — 1 if shift?(c) A (¢ = bit — 1)
é=alc) = { bit)2 if shift?(c) A (bit/2 < ¢ < bit — 1)

1 if shift?(c) A (1 < ¢ < bit/2)

¢ mod 2Y* otherwise

where shift?(c) checks if ¢ is a shift operand. « is designed to preserve semantics of shift
operations in a meaningful way. For example, it translates shift by 31 in 32-bit domain to
shift by 3 in 4-bit domain. Apart from shift constants, o simply masks in the lowest bit bits.

During this conversion, we memorize every replacement of ¢ with ¢, so that we can map
each reduced-bitwidth constants back to the set of original constants to obtain candidate
programs in the precise domain. We construct the replacement map ~ by storing ~[¢] <
v[¢]U{c} for every constant ¢ in p,.r. Before the precise equivalence verification, the reduced-
bitwidth constant ¢ is replaced with every constant in the set y[¢] (line 19 in Algorithm 3)
with the expectation that one of them will lead to a correct solution.

We are able to optimize many bitwidth-sensitive programs (e.g. population count and
computing higher-order half of multiplication) using this reduced-bitwidth trick.

Data Structure for Backward Search Graph

We could store backward search graphs the same way we store forward search graphs. How-
ever, it would require a large amount of memory because in the backward direction, an
instruction is a one-to-many function; one program postfix can appear in a large number of
backward equivalence classes. Instead of using a nested map to store all backward search
graphs, we construct n separate maps to store n backward search graphs By, ..., B,. We can
find a program postfix p such that p(u;) = oy, ..., p(u,) = 0y, by looking up Y [ui]N...NY [u,].
The pseudocode in Algorithm 2 and Algorithm 3 has to be modified slightly to support this
data structure.

Existing Backward Search in Superoptimization

We have known of one superoptimization work by Bansel et al. that also applies backward
search strategy [18]. Their key concept of meet-in-the-middle strategy is similar to that of
our algorithm. However, the implementation details differ significantly. One major difference
is that in LENS, an inverse function produces a set of all possible output program states, and
we look for an exact match between forward and backward program states in the reduced
bitwidth domain. In contrast, their inverse function outputs one program state with don’t-
know bits in the original domain, and they look for a match such that a concrete bit in a
forward program state can match to either the same concrete value or a don’t-know value of
the same location in a backward program state. An advantage of their strategy is that the
number of backward program states can be much smaller than ours. However, if a program

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 111

state contains many don’t-know bits, they may have many more program candidates that
cannot be pruned away because of the imprecision of don’t-know bits.

In our experiment, we observe that for all programs for which LENS without the backward
search can synthesize an optimal solution under 20 minutes, LENS with the backward search
always finds an optimal solution with less time, 5.2x faster on average. However, Bansal
et al. observe a slowdown in synthesis time when using the backward search for 37% of
their benchmarks. They comment that the slowdown usually happens when there are many
don’t-know bits.

4.5 Context-Aware Window Decomposition

We can scale a search technique that can synthesize relatively small programs to optimize
larger programs using a decomposition. Let p,.s be a large program to be optimized, and L
be a window size. We can decompose pyef into ppre © Pspec B Ppost such that length(pspe.) < L,
and optimize pgpe., the code inside the window. Peephole optimizations will try to optimized
Pspec @lone, or in the best scenario, with a precondition that is often not precise. The
precondition and postcondition relax the correctness condition and provide invariants that
may be exploited by the search. Therefore, we believe that optimizing psp.. with the most
precise precondition and postcondition, essentially in the context of its prefix p,,. and postfix
Dpost; can lead to finding a better program. We call this decomposition a contezt-aware
window decomposition. In our implementation, we pick a random position of the window
and optimize the program. This process repeats until we cannot optimize the program at
any window’s position anymore.

To support the context-aware decomposition, we need to modify search algorithms slightly.
Note that any search technique can be modified to be context-aware. Recall that a search
technique looks for a program p such that for each ¢ € I,0 € O.p(i) = o. To make the
search context-aware, we do not need to change this search routine, but only need to ad-
just the equivalence condition used during equivalence verification and the way test cases
are updated as shown in Table 4.1. Normally, when we find p that passes all test cases,
we uses a constraint solver to verify if ps,.. = p. If they are not equivalent, the constraint
solver will return an input counterexample .., which we use to update the test inputs [
and test outputs O as shown in Column ‘non-context-aware’. Then, the search continues to
find a new candidate program, and so on. To make the search context-aware, we ask the
constraint solver if p is equivalent to ppe. in the context of p,.. and pp.s, in particular if
Dpre @ Dspec @ Dpost = DPpre D P @ Ppost- 1f they are not equivalent, the constraint solver will
return 4., which is an input to p,,. (not directly to p), so we have to update the test cases
differently as shown in Column ‘context-aware’.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 112

Routine Non-context-aware Context-aware
Equivalence verification Dspec =D Ppre @ Pspec D Ppost = Ppre B D D Ppost
Input text-cases update I'=TU{ic} I =TU{ppre(ice)}

Output text-cases update | O = O U {pspec(ice)} O = O U {ppre ® pspeclice)}

Table 4.1: The differences between non-context-aware and context-aware decomposition. p
is a candidate program. 7. is the input counterexample returned by the constraint solver if
the candidate program is not equivalent to the reference program.

Concrete Example

Assume we want to optimize the following ARM program:

P_pre: cmp r3, r4

moveq r1, #0 // mov if r3 = r4

movne r1, #1 // mov if r3 != r4
P_spec: cmp r2, #31

movhi r1, #0 // mov if r2 > 31

andls r1, r1, #1 // and if r2 <= 31

The decomposition selects the window as labeled; p,os is empty. Without ppre, Pspec cannot
be improved because no faster code modifies r1 as pgpe. does. With pp.., however, the
superoptimizer learns that the value of ri1 is either 0 or 1 at the beginning of pspe., so
the last instruction r1 = r1 & 1 does not have any effect. Thus, the superoptimizer can
simply remove it. Note that we do not have to explicitly infer this precondition of pgpec.
It is implicit, captured by running p,.. along with pg,.. during test case evaluations and
equivalence verification. We also find that p,.s helps the superoptimizer discover faster
code.

4.6 Cooperative Superoptimizer

To utilize strengths of different search techniques, we introduce a cooperative superoptimizer
that combines all search techniques in a simple fashion. The cooperative superoptimizer
launches all search techniques in parallel. Each search instance executes one of the three
following state-of-the-art search techniques.

Symbolic search (SM). Our symbolic search exploits an SMT solver to perform the
search. The search problem is written as a logical formula whose symbolic variables encode
the choices of the program p. The formula embeds the ISA semantics and ensures that
the program p computes an output o given an input i. Using Rosette [160], we obtain the
symbolic search for free without having to implement a translator for converting programs to
SMT formulas and vice versa. Compared to the other two algorithms, the symbolic search is
slow, but it is able to synthesize arbitrary constants, which are sometimes needed in optimal
code.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 113

Enumerative search (F). Our enumerative search implements the LENS algorithm (Sec-
tion 4.4). The enumerative search synthesizes relatively small programs the fastest, but it
does not scale to large programs by itself.

Stochastic search (S7'). Our stochastic search explores the search space through a ran-
dom walk using Metropolis Hastings acceptance probability with a cost function that reflects
the correctness and performance of candidate programs [136, 137]. The stochastic search can
synthesize larger programs compared to the symbolic and enumerative search because of the
guidance of the cost function. However, it sometimes misses optimal programs because it
can get stuck in local minima.

There are two modes of search. Synthesize mode (s) is when a search does not use a
starting correct program except for equivalence verification. Optimize mode (o) is when
a search uses a starting correct program beyond equivalence verification. The table below
summarizes the types of search instances we use.

Search Instance | Description

E?® enumerative on entire code fragment

E° enumeratvie with decomposition

SM* symbolic on entire code fragment

SM° symbolic with decomposition

ST*® stochastic that starts from a random program

ST° stochastic that starts from the input correct program

Communication between Search Instances

The search instances aid each other by exchanging information about the current best so-
lution equivalent to p,.r. When a search instance finds a new best program, it updates the
shared best solution py.s;. The other search instances may obtain pp.s; to aid in their search
processes. In particular, different types of search techniques utilize py.s; as follows:

e SM? does not use ppest.
e F° and SM? apply the context-aware window decomposition on ppes;.

e ST% reduce its search space by only exploring programs with up to length(ppes:) in-
structions.

e ST° restarts the search from p,.s. In practice, it is better to allow some divergence
among stochastic instances. Therefore, our stochastic instances check ppes; every 10,000
mutations and restart the search from pyes; only if cost(ppes:) is much less than the cost
of the local best solution; in our implementation, we restart when the difference is more
than 5.

e [° E° ST?, and ST° harvest new constants from py.s; and include them into its list
of constants to try. These new constants come from SM.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 114

Practical Configuration of Search Instances

We present a configuration for allocating search instances that worked well in our experi-
ment; however, it might not be optimal. Our cooperative superoptimizer executes N search
instances with the following distributions: N/2 — 1 E°, one E* two ST*, three ST°, and
the rest for SM°. We dedicate almost half of the threads for enumerative search because
it performs the best in most benchmarks (see Section 4.8). Multiple enumerative instances
attempt to optimize different parts of the program at the same time, reducing overall search
time to find a final solution. We allocate one thread for E*® because if the size of the final
solution is small, £ will find an optimal solution quickly. A few ST instances are allocated
because they can perform very well on some benchmarks on which F performs poorly. We
also dedicate a few threads for ST instances because they often help E° instances reach
the final solution faster. Finally, we allocate the rest of the resources to SM?, which helps
discover optimizations that involve synthesizing arbitrary constants. For search instances
that use the window decomposition, we use four sizes of window L, 2L, 3L, and 4L, where
L is a constant specific to the ISA.

4.7 Superoptimization Construction Framework

We develop GREENTHUMB, a framework for building superoptimizers for different ISAs
and testing search techniques. Figure 4.5 depicts the major components of GREENTHUMB
and their interactions. At the core is the cooperative search algorithm (Section 4.6), which
launches parallel search instances running different search techniques. Each instance consists
of multiple components. First, the encoder-decoder parses a program into an IR. It is also
used to print output optimized programs to files. On large programs, performs a context-

input code fragment
Search Instances

get best v

program » | Encoder- | &—>» R
Decoder | window | (inst P,

update decom-| (inst

best position | “nst

Space

ISA get| [return

Simulator reference | |optimized

M program | |program

A

Shared Equw_olence Seor;h
Data Validator Technique

Figure 4.5: Major components in GREENTHUMB

()
()
()
program Search (inst)
()
()
()

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 115

aware window decomposition (Section 4.5) and uses a search technique to optimize a fragment
p in the context of prefix p,.. and postfix pyes:. An ISA simulator evaluates the correctness
of a candidate program on concrete test cases. If a candidate passes all test cases, the
equivalence validator verifies the candidate program against the reference program on all
inputs using a constraint solver. If they are equivalent, and the candidate program is better
than the current best program, the search instance updates the shared data. If they are not
equivalent, the counterexample input is added to the set of concrete test cases.

The detailed documentation on how to extend GREENTHUMB to a new ISA can be
found on https://github.com/mangpo/greenthumb. We have used GREENTHUMB to build
superoptimizers for ARM, GreenArrays (GA), and a subset of LLVM. Although ARM and
GA are drastically different, our framework is able to support both ISAs. This demonstrates
the retargetability of our framework.

ARM is a widely-used RISC architecture. An ARM program state includes 32-bit regis-
ters, memory, and condition flags. We extended GREENTHUMB for ARMv7-A and modeled
the performance based on ARM Cortex-A9 [16]. An ARM program state includes 32-bit
registers, memory, and condition flags. The smallest window size L is set to 2. Recall that
there are four sizes of window L, 2L, 3L, and 4L.

GreenArrays GA144 is a low-power processor, composed of many small cores [65]. The
program state for GA includes registers, stacks, memory, and a communication channel,
similar to the one used in the superoptimizer in CHLOROPHYLL. A communication channel
is an ordered list of (data, neighbor port, read/write) tuples representing the data that the
core receives and sends. For two programs to be equivalent, their communication channels
have to be identical. We set the smallest window size L to 7.

Limitations

The performance cost is the sum of average latency of instructions in a program for both
ISAs. We do not model memory access latency variations caused by misses at different levels
of caches. We assign the same cost to all loads and stores. Therefore, our performance model
is imprecise; as a result the superoptimizer may output a program that is actually slower
than other candidates it has explored. To work around this problem, the superoptimizer can
output the best K programs instead of only the best one. This way, we can try running all
of them on the real machine and select the fastest one empirically.

The second limitation is that the superoptimizer can only optimize code without loops
and branches. In order to optimize across multiple basic blocks with loops and branches, we
will need to modify the superoptimizer.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 116

Framework Development

GREENTHUMB 1.0 was released in March 2016. However, it still requires a considerable
amount of efforts to (1) define the description of a new ISA — for example, the program
state structure, types of instructions, types of instruction operands, the parser, the printer,
etc — and (2) implement an inverse interpreter used in the LENS algorithm. Thus, we im-
proved the framework and released GREENTHUMB 2.0 in October 2016. Shortly after the
release, Linki Tools — a compary specialized in building development tools and compilers for
programming embeded system devices — expressed their interest in using GREENTHUMB
to build superoptimizers. The company had experimented using GREENTHUMB to build a
superoptimizer for RISC-V. Finally, they decided to build their own commercial superopti-
mization framework, S10 [99], from the resurgence of GREENTHUMB. The system imple-
mentation of S10 is more modular, more maintainable, and more performance. On top of
the features GREENTHUMB provides, S10 supports:

e a DSL to describe an ISA

e running search on multiple machines

e big-endian/little-endian accessing and byte addressing

e unit tests, integration tests, randomized tests, and fuzzing tests

The company used S10 to build superoptimizers for many variants of RISC-V and is in
the process of developing superoptimizers for x86 and ARM.

4.8 Evaluation

The key result in this chapter is that we improve on the state of the art in superoptimization,
represented by STOKE [136, 137], the stochastic superoptimizer. On large benchmarks, our
implementation of STOKE produced ARM programs of length 10-27 and GA programs of
length 18-32. Our cooperative superoptimizer optimized the benchmarks faster (12x faster
on average) and obtained better solutions (the performance cost of our code is, on average,
18% lower than that of stochastic search).

We implemented all search techniques as well as ARM and GA emulators in GREENTHUMB
using Racket. Since all search techniques are implemented in the same language and using
the same emulator, we can compare them fairly.

This section presents detailed evaluation of our algorithms, starting from the new enu-
merative algorithm, using the following benchmark suites.

ARM Hacker’s Delight Benchmarks consist of 16 of the 25 programs identified by
[67] drawn from Hacker’s Delight [165]. We excluded the first nine programs from our set of
benchmarks because they are very small. We used code produced by gcc -march=armv7-a

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 117

-00 as the input programs to the superoptimizers. Their sizes ranged from 16 to 60 instruc-
tions. The timeout was set to one hour.

GA Benchmarks consist of frequently-executed basic blocks from MD5, SHA-256, FIR,
sine, and cosine functions from the CHLOROPHYLL compiler’s benchmarks. We used CHLORO-
PHYLL without superoptimization to generate these basic blocks. The sizes of the input
programs in this benchmark suite ranged from 10 to 56 instructions. The timeout was set
to 20 minutes.

Experiment I: Evaluating the Lens algorithm

Experiment I is designed to evaluate the base search techniques: SM?*, E* and ST?. Recall
that superscript * indicates synthesize mode (no window decomposition). This experiment
will help us answer which search technique is a suitable building block for a superoptimizer
with window decomposition. For each benchmark, we ran each search technique on a single
thread 16 times.

Hypothesis A FEnumerative search is faster and can solve larger benchmarks than the
other base search techniques.

E? is superior in terms of speed and scalability: it was the fastest search; it solved all
except two benchmarks; and it could solve larger benchmarks than other synthesizers. Re-
garding consistency—which is desirable because it obviates the need for redundant instances,
improving the chances of finding optimal solutions—almost all of £® 16 search instances
found optimal solutions in each of its solved benchmarks. Note that there is small amount of
randomness in the enumerative search because the initial test cases are generated randomly.

There were a total of 22 benchmarks in which one of the search techniques found optimal
solutions in at least one of the 16 runs. Columns SM?, E* and ST” of Figure 4.6 summarize
the results. Figure 4.6(a) displays the number of benchmarks solved by each search technique,
categorized by size. A search technique solved a benchmark if it an optimal solution in one of
its run. Row ‘benchmarks’ in Figure 4.6(b) summarizes the numbers of solved benchmarks.
Row ‘instances’ displays the average numbers of search instances that found optimal solutions
per solved benchmark. In terms of search time, we evaluated each search technique against
E? by comparing the best runs of the benchmarks they both solved. Row ‘E* speedup’ shows
how much faster £ was on average compared to a particular search technique.

According to Figure 4.6(a), £ could synthesize larger ARM programs than ST and SM*
could. For GA, E?® could synthesize larger programs than SM? could. While E* and ST*
were comparable at synthesizing large GA programs, ST*® was much worse at synthesizing
smaller GA programs. This might be because the cost function of ST*® does not fit well with
these GA benchmarks, or the mutations we have are not the best for GA. Interestingly, the
largest GA benchmark, which E* failed to solve, was solved by ST®. This result suggests that
sometimes the cost function can be very effective in guiding the search in some particular

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 118

ARM Benchmarks GABenchmarks

Size 1-2 12

Size 2-6

12 size 3 === 2
g Size 4.5 9 size 7-8 ==
B 6 size 9-12 /=
6
3 3
0 0
ST SM E E' E" E" ST SM E E' E" E"

(a) Number of solved benchmarks, categorized by size

Solved ST | SMs | E° | E¥ | ES" | B
Benchmarks | 13 12 20 13 12 11

Instances 7.2 13.5 | 149 | 158 | 15.5 | 15.9
FE? speedup | 14x | 52x Ix | 2.7x | 5.2x | 11x
(b) Total number of solved benchmarks, average number of in-
stances per solved benchmark, and search time speedup by E°

Figure 4.6: Comparing base search techniques

problems. Another benchmark that £ failed to solve can be solved by SM?*. This is because
the optimal program contains a constant not included in the pre-defined constant list of £

and ST*.

Hypothesis B The LENS algorithm improves on the existing enumerative algorithms.
With the same experimental setting, we compared multiple versions of enumerative
search:

e [°: LENS with all pruning strategies

e F*: E* without backward search (unidirectional search)

o [*": E* without reduced-bitwidth trick

o F¥: FE%" without refinement through incremental test cases. FE*” represents the

existing enumerative search but without the stack representation [21].

Columns E*—E*" of Figure 4.6 summarizes the results. The pruning strategies we introduce
not only increase the size of code an enumerative search can solve but also speed up the
search; E° was, on average, 11x faster than E*".

Experiment II: Evaluating window decomposition

Experiment II is designed to test the effectiveness of context-aware window decomposition.
We test E°, which is context-aware, against a modified version of E°, which is not context-
aware, on the 12 benchmarks that E® cannot synthesize optimal solutions from the previous
experiment. Recall that the superscript © indicates optimize mode (see Section 4.6). On

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 119

ARM benchmarks, we ran a superoptimizer using 32 E° search instances on a 16-core hyper-
threaded machine. On GA benchmarks, we ran 16 search instances on a 16-core Amazon
EC2 machine. For each benchmark, we repeated the experiment three times.

Hypothesis C The context-aware window decomposition technique enables the enumera-
tive search to find better code than does the non-context-aware window decomposition.

Considering the best out of the three runs, in six benchmarks, the context-aware decom-
position found solutions with 1.3x—3x lower cost than did the non-context-aware decompo-
sition. In the rest, both of them found solutions with the same costs.

Experiment III: Evaluating cooperative search

Experiment III is designed to evaluate superoptimizers based on different search techniques
with context-aware window decomposition. We use the same experimental set up as in
Experiment II. We evaluate the following five versions of superoptimizers, each of which
runs N search instances (N = 32 for ARM, and N = 16 for GA).

Superoptimizer | Search instances use:

ST all ST instances with no communication

ST’ all ST instances with no communication

SM one SM? instance, N — 1. SM° instances

E one F° instance, N — 1 E° instances

C one E*, N/2 — 1 E° two ST®, three ST, and the rest for SM° instances

Search instances of each superoptimizer communicate with each other - except in ST and
ST’ , which represent STOKE implemented in our framework. In E SM M, and C we add
one mstance of an enumerative or symbolic search in synthesize mode (E® or SM?) because
these instances can find an optimal solution should the optimal solution be small.

Hypothesis D The enumerative superoptimizer can often synthesize best known programs
more consistently and faster than the stochastic and symbolic superoptzmzzers

E was consistent on 2. 1x, 2.6x, and 1.4x more benchmarks than ST ST and SM.
We define a superoptimizer as consistent at solving a benchmark if it found programs as
optimal as the best known solution in all runs. Consistency is desirable because in practice
we want to find the best program in one run not multiple runs. Then, we did a pair-wise
comparison of the median search time between E and each of the other superoptimizers on
the benchmarks they both solved consmtently We found that E was also on average 9x,
4.6x, and 14x faster than ST’ ST and SM.

Figure 4.7 shows the performance costs of the best correct programs found in each of
three runs; the lower the better. The reported costs of each benchmarks are normalized
by the cost of the best known program of that particular benchmark. Table 4.2 reports
the median time to finding the best known solutions for the various superoptimizers. If a

CHAPTER 4. GREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 120

16 _ P10 e pl4 e D18 mm—— D22 E——
— pll messm pl5 P19 p23
3 8 pl2 memmm P16 mmmm P20 EE—— D24 E—
O I p13 p17 P2l — D25 —
el
& 4 I
E l
S 2 ¥ 1T F
z -

RS S B M o S L S S S i1 8

Stochastic<s> Stochastic<o> Symbolic Enumerative Cooperative Cooperative™

(a) ARM Hacker’s Delight Benchmarks

complexA mm— interp m— mdsSh s ga-pl3
. 8 _ complexB m— rrotate md5i ga-pl4
3 complexC mdSf — shal e ga-pl5
% 4 fir md5g sha2 ga-pl7
E 2 I 1 I+
. | |
1 _I' - _I I J I - I-' _____ I S _I ______ . T
Stochastic<s> Stochastic<o> Symbolic Enumerative Cooperative Cooperative™

(b) GA Benchmarks

Figure 4.7: Costs of best programs found by the different superoptimizers (normalized by
the cost of the best known program). A dash represents the cost of the best program found
in one run. A dash may represent more than one run if the best programs found in different
runs have the same cost. If one or two runs did not find any correct program that is better
than the input program, the vertical line is extended past the chart. If none of the runs
found a correct program that is better than the input program, a rectangle is placed at the
top of of the chart.

(a) ARM Hacker’s Delight Benchmarks (b) GA Benchmarks
Prog | ST | ST |smM | E | C | ¢” Prog | ST | ST | sm]| E | C |[c”
pl0 - - - 145 88 188 complexA 45 258 136 - 72 63
pll 244 188 - 49 92 1171 complexB - - 186 43 52 -
pl2 - - - 566 | 646 - complexC - - 7 - 21 17
pl3 13 6 85 3 3 2 fir 7 - 501 153 23 63
pl4d - 755 19 11 9 interp 119 - 109 12 7 22
plb 837 - 591 26 8 8 rrotate - - 104 108 92 -
pl6 5 5 83 - 7 6 md5bf - - 832 97 71 34
p17 15 12 82 11 6 72 mdbg - - 1078 | 206 | 163 | 259
pl8 21 38 - 7 9 89 md5bh - - 44 2 1 1
pl9 - 21 - 76 36 49 md>bi - - 690 549 | 520 -
p20 - 254 - 129 113 365 shal - - - 20 24 178
p21 1316 - - - 1139 - sha2 - - - - 179 | 214
p22 - . . . - . ga-pl3 . . . 27 | 127 | -
p23 - . - | 707 | 665 | - ga-pld - - - - | 187 | 281
p24 - 140 | - | 73| 151 . ga-pl5 . . . - - -
p25 72 - 47 2 2 1 ga-pl7 - - - - - -
Table 4.2: Median time in seconds to reach best known programs. “-” indicates that the

superoptimizer failed to find a best known program in one or more runs. Bold denotes the
fastest superoptimizer to find a best known program in each benchmark.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 121

superoptimizer did not find a program as optimal as the best known solution on one or more
runs on a benchmark, the table excludes that corresponding entry.

Hypothesis E The cooperative superoptimizer improves on the enumerative superoptimizer
by utilizing the strengths of other search techniques.

We compare C' and E. While E uses only enumerative search instances, C uses enu-
merative as well as symbolic and stochastic search instances. According to the result, C
was consistent at finding best known solutions on 29 out of 32 benchmarks, while E was
consistent on 23 benchmarks. C and E were comparable in term of search time; C' was
33% faster, on average. Columns C' of Figure 4.7 and Table 4.2 display the costs of the
best correct programs found by C' and its median time to find the best known solutions
for all benchmarks. Compared to the algorithm used in the s state—of the art superoptimizer
(STOKE), C was, on average, 12x faster than the best of ST and ST". The performance

cost of code produced by C is, on average, 18% lower than that of the best from ST and
ST”. B

We also tested C""—the cooperative superoptimizer with the enumerative search without
our pruning strategies—to examine how much the performance of the enumerative instances
affect the performance of the cooperative superoptimizer. Columns C" of Figure 4.7 and
Table 4.2 display the costs of the best correct programs found by C" and its median time
to find the best known solutions. According to the result, C" could not consistently solve
seven benchmarks that C' could. Hence, we conclude that our pruning strategies in the
enumerative search are crucial for obtaining the best performance out of the cooperative
superoptimizer.

Experiment IV: Runtime speedup over gcc -03

Experiment 1V is designed to test the effectiveness of the cooperative superoptimizer against
an optimizing compiler. We measure the execution time of all benchmarks in this experiment
on an actual ARM Cortex-A9.

Hypothesis F Cooperative superoptimizer can optimize code generated from a non-
optimizing compiler and obtain code as fast as generated from an optimizing compiler.

From the previous experiment, C' optimized code generated from gcc -00 and produced
code as fast as gcc -03 code for all ARM benchmarks. In fact, C' found faster code than
those generated from gcc -03 on five benchmarks. One of them is 17.8x faster. Thus, for the
new architectures for which we do not have good optimizing compilers, our superoptimizer
can help generating efficient code.

CHAPTER 4. GrREENTHUMB: SUPEROPTIMIZATION FRAMEWORK 122

Program | gcc -O3 | Output Search Runtime | Path to best code
length length | time (s) | Speedup
pl8 7 4 9 2.11 E?°
p21 6 5 1139 1.81 E°x, SM°x, ST*
p23 18 16 665 1.48 ST x — E°x
p24 7 4 151 2.75 ST x — E°+ — ST° — E°%
p25 11 1 2 17.8 E?
wi-txrateba 9 8 32 1.31 SM° — ST°
wi-txrate5b 8 7 66 1.29 E°
mi-bitarray 10 6 612 1.82 SM°x — FE°x
mi-bitshift 9 8 5 1.11 E°
mi-bitent 27 19 645 1.33 E° — ST° - E° — ST° — E°
mi-susan 30 21 32 1.26 ST°

Table 4.3: Execution time speedup over gcc -03 code and search instances involved in
finding the solution. In the last column, X — Y indicates that Y uses the best code found
by X. x indicates exchanging of the best code among search instances of the same search
technique.

Hypothesis G Cooperative superoptimizer can further optimize real-world code generated
by an optimizing compiler.

We compiled WiBench [176] (a kernel suite for benchmarking wireless systems) and
MiBench [69] (an embedded benchmark suite) using gcc -03 for ARM. We extracted basic
blocks from the compiled assembly and selected 13 basic blocks that contain more than seven
instructions and have more data processing than load/store instructions. For six out of 13
code fragments, C found faster fragments compared to those generated by gcc -03, offering
up to 82% speedup. B

Table 4.3 summarizes char