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Abstract
Trends in both consumer and high performance computing are
bringing not only more cores, but also increased heterogeneity
among the computational resources within a single machine. In
many machines, one of the greatest computational resources is now
their graphics coprocessors (GPUs), not just their primary CPUs.
But GPU programming and memory models differ dramatically
from conventional CPUs, and the relative performance character-
istics of the different processors vary widely between machines.
Different processors within a system often perform best with
different algorithms and memory usage patterns, and achieving
the best overall performance may require mapping portions of
programs across all types of resources in the machine.

To address the problem of efficiently programming machines
with increasingly heterogeneous computational resources, we
propose a programming model in which the best mapping of
programs to processors and memories is determined empirically.
Programs define choices in how their individual algorithms may
work, and the compiler generates further choices in how they can
map to CPU and GPU processors and memory systems. These
choices are given to an empirical autotuning framework that allows
the space of possible implementations to be searched at installation
time. The rich choice space allows the autotuner to construct poly-
algorithms that combine many different algorithmic techniques,
using both the CPU and the GPU, to obtain better performance
than any one technique alone. Experimental results show that
algorithmic changes, and the varied use of both CPUs and GPUs,
are necessary to obtain up to a 16.5x speedup over using a single
program configuration for all architectures.

Categories and Subject Descriptors I.2.5 [Artificial Intelli-
gence]: Programming Languages and Software; D.3.4 [Program-
ming Languages]: Processors—Compilers

General Terms Experimentation, Languages, Performance

Keywords Autotuning, Compilers, GPGPU, Heterogeneous
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1. Introduction
The past decade has seen an explosion in processor parallelism,
with the move to multicores. The next major architectural trend
is the move from symmetric multiprocessors to heterogeneous
systems, with multiple different processors and memories.

A major source of heterogeneity today is the widespread
availability graphics coprocessors (GPUs), which can now be used
for general purpose computation. GPUs can offer large speedups,
thanks to high processor density and high memory bandwidth.
Conventional wisdom often holds that, if a program can be mapped
into GPU execution, it should be, since it will benefit from the
immense computational resources. Instead, our results show that
the choices in mapping to heterogeneous machines are much more
complex.

A major challenge in utilizing heterogeneous resources is the
diversity of devices on different machines, which provide widely
varying performance characteristics. A program optimized for
one coprocessor may not run as well on the next generation of
processors or on a device from a different vendor, and a program
optimized for GPU execution is often very different from one
optimized for CPU execution. The relative performance of the
CPUs and GPUs also varies between machines. On one machine, a
specific portion of a computation may run best on the CPU, while
on another machine it may run best on the GPU. There is also a
scheduling problem: even if a specific kernel may perform better
on the GPU, if the GPU is overloaded and the CPU is idle, it may
be best to balance the workload between the two, or it may be best
to place computation somewhere it runs more slowly but nearer to
where its output will be used.

For many applications, mapping across all of a machine’s
resources—in different ways per-machine, and per-program—is
essential to achieving high performance. In our SVD benchmark,
the best performing programs used both the CPU and GPU
concurrently for a significant subset of total work on some
machines but not on the others.

Researchers are proposing even more asymmetric hetero-
geneous architectures with varied types of cores on a single
chip [16]. But even on symmetric multicore systems without
a GPU, the model of a multicore as simply a collection of
identical independent cores does not hold in practice. Many modern
processors dynamically scale up the frequency of a core when the
cores around it are idle and share different amounts of resources
between pairs of cores, making the performance of one core
highly dependent on the workload of its neighbors [7]. While these
techniques improve performance for many workloads, it implies
that naively allocating a program more threads is not the optimal
strategy for every algorithm on every system.

The traditional goal of a compiler is to map a program to a
specific piece of hardware. Most compiler optimizations reason
about program transformations using a simplified model of a spe-



cific processor target. This simple model of the performance of the
machine is often implied by the heuristics that guide optimization.
In heterogeneous machines, there are now multiple processors,
with wildly different features and performance characteristics.
It is extremely difficult for a single, comprehensible model to
capture behavior across many processors and memory subsystems
on which code may run, in order to reason about mapping
a program to a heterogeneous machine. Compiling a program
for a heterogeneous machine requires complex, interdependent
choices of algorithm: which algorithm to use; placement: on which
resources to place computations and data; and mapping: how much
parallelism to exploit and how to use specialized memories.

We present a solution to the problem of efficiently programming
diverse heterogeneous systems based on empirical autotuning.
At installation time, a search space of possible program imple-
mentations is explored using an evolutionary autotuner that tests
performance on representative inputs. This search space includes
not only when to use different coprocessors, cores, and memory
subsystems, but also how to use them. The autotuner is able to
switch between entirely different algorithmic techniques encoded
in the program, and between multiple strategies for mapping them
to heterogeneous computational resources, and to combine the
different techniques encoded in the program into a large search
space of poly-algorithms.

Our work extends the PetaBricks language and compiler [3],
which allows the programmer to specify algorithmic choices at
the language level. Using this mechanism, PetaBricks programs
define not only a single algorithm, but a search space of possible
algorithms. The extensions to PetaBricks presented in this paper
include:

• Compiler passes and static analyses to automatically convert
subsets of existing PetaBricks programs into OpenCL kernels
that can be run on a variety of architectural backends, and
coexist as choices available to the autotuner. This includes
static analyses to help efficiently manage the memory of these
coprocessing devices, and reduce data movement between
kernel executions.
• A GPU management runtime that allows coprocessor devices

to be efficiently utilized in the PetaBricks workstealing runtime
without requiring the calling CPU thread to block on GPU oper-
ations, providing automatic memory management, and allowing
efficient overlapping of computation and communication.
• Autotuning enhancements to search different divisions of GPU

and CPU work, and to allow the exploration of choices on the
GPU, such as choices of in which of the many memory spaces
to place different data, and choices of how much data to run on
the GPU.

We show experimentally how different heterogeneous systems
require different algorithmic choices for optimal performance. We
show that, even when migrating between two architectures with
modern GPUs, one can obtain up to a 16.5x speedup by retraining
for each architecture. We show how diverse architectures perform
best with differing divisions of work between the GPU and the CPU
on each machine. The different configurations found are often non-
obvious, and suggest that empirical tuning techniques are required
to get the best performance on modern machines.

1.1 Contributions
We believe this is the first system which automatically determines
the best mapping of programs in a high level language across
a heterogeneous mix of parallel processing units, including
placement of computation, choice of algorithm, and optimization
for specialized memory hierarchies. With this, a high-level, archi-

tecture independent language can obtain comparable performance
to architecture specific, hand-coded programs.

To realize this system,

• we integrate choices of devices, memories, and execution
parameters into the PetaBricks autotuning compiler;
• we automate both the OpenCL code generation and selection

process for a traditionally hand-written scratchpad memory
optimization that requires significant memory access rewriting
and the generation of multi-phase cooperative loads and stores;
• we introduce a runtime system that incorporates the use of a

GPU coprocessor into a work-stealing system without the need
to block on copies and GPU operations;
• we introduce a compiler analysis to identify when to use

no copy, lazy copy, and eager copy memory management
techniques.

This paper focuses not on the impact of individual optimiza-
tions, but on how to integrate many techniques together to automate
the process of generating code and to achieve good performance on
any heterogeneous machine.

In evaluating our system across a range of applications and
architectures, we show that algorithmic choices are required to
get optimal performance across machines with different processor
mixes, and the optimal algorithm is different in different architec-
tures. Unlike prior work, we add the additional axis of algorithmic
choice and global learning to our search space. We paint a complex
picture of the search space where the best device(s) to use depends
on the algorithm being run, the context it is being called from, and
the underlying hardware being used. We show that the choice of
how and when to use the GPU is complex with no simple answer.
The best mapping of a program to devices depends not only on
the execution times of different pieces of the program but also data
location and existing tasks in the queues. Finally, we demonstrate
that splitting work to run concurrently both on the GPU and the
CPU can significantly outperform using either processor alone.

2. PetaBricks Language Background
The PetaBricks language provides a framework for the programmer
to describe multiple ways of solving a problem while allowing the
autotuner to determine which of those ways is best for the user’s
situation [3]. It provides both algorithmic flexibility (multiple
algorithmic choices) as well as coarse-grained code generation
flexibility (synthesized outer control flow).

At the highest level, the programmer can specify a transform,
which takes some number of inputs (the from keyword) and
produces some number of outputs (the to keyword). In this respect,
the PetaBricks transform is like a function call in a procedural
language. The major difference is that it allows the programmer
to specify multiple pathways to convert the inputs to the outputs
for each transform. Pathways are specified in a dataflow manner
using a number of smaller building blocks called rules, which
encode both the data dependencies of the rule and C++-like code
that converts the rule’s inputs to outputs.

Dependencies are specified by naming the inputs and outputs
of each rule, but unlike in a traditionally dataflow programming
model, more than one rule can be defined to output the same data.
Thus, the input dependences of a rule can be satisfied by the output
of one or more rules. The PetaBricks compiler and autotuner decide
which rules to use to satisfy such dependencies by determining
which are most computationally efficient for a given architecture
and input. For example, on architectures with multiple processors,
the autotuner may find that it is preferable to use rules that minimize



0.02

0.03

0.04

 3  5  7  9  11  13  15  17

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Kernel Width

(a) Desktop

0.10

0.20

0.30

0.40

0.50

 3  5  7  9  11  13  15  17

Kernel Width

(b) Server

0.10

0.20

0.30

0.40

0.50

 3  5  7  9  11  13  15  17

Kernel Width

2D Localmem
2D No-local

Seperable Localmem
Separable No-local

Autotuner

(c) Laptop

Figure 2. Execution time (lower is better) of different possible mappings of SeparableConvolution to OpenCL with varying kernel widths
on three test systems when the input size is 3520 × 3520. The three test systems are described in Section 6.1. Our autotuner (described in
Section 5) always discovers the best configuration for each system and width. Note that each mapping is optimal for at least one machine and
kernel width. In handwritten OpenCL, these would correspond to four distinct programs the programmer would need to write.

the critical path of the transform, while on sequential architectures,
rules with the lowest computational complexity may be a better
choice.

2.1 Convolution in PetaBricks
Figure 1 shows SeparableConvolution, an example PetaBricks
program. This program computes the convolution of a 2D matrix
with a separable 2D kernel. The main transform (starting on line 1)
maps from input matrix In to output matrix Out by convolving the
input with the given Kernel. It does this using one of two rules:

• Choice 1 maps from In to Out in a single pass, by directly
applying the Convolve2D transform.
• Choice 2 maps from In to Out in two passes, by first performing

the ConvolveRows transform, storing its result in buffer,
and then performing the ConvolveColumns transform on this
intermediate result.

The three Convolve* transforms are each defined in terms
of a single data parallel rule which, for each point in Out,
computes a sum of the points in the corresponding KWIDTH-
sized region of In weighted by the corresponding points in the
Kernel. ConvolveRows and ConvolveColumns apply only in the
horizontal and vertical directions, respectively, while Convolve2D
applies both dimensions simultaneously, iterating over a 2D
window of In for each output point. Based on the experimental
data, the autotuner chooses which rules to run (a choice of
algorithm), and how to map them onto the machine, including
runtime scheduling strategy, parallelism, data placement, and the
choice of processors on which to run.

2.2 The Choice Space for SeparableConvolution
The top-level SeparableConvolution transform compiles into
two simple rules, each of which computes the entire Out matrix
from the entire In matrix. Internally, these rules apply the
Convolve* transforms which are defined elementwise, without
sequential dependencies, and so can be executed in a data parallel
fashion over the entire output space. As one choice, these data
parallel rules can be compiled directly into equivalent OpenCL
kernels, with each work-item computing a single cell of Out.

Because of its simple data parallel pattern, this example runs
most efficiently when all Convolve* transform are executed
entirely in the OpenCL runtime, but the ideal choices of algorithm
and mapping to the memory system vary across machines, and for
each machine across different kernel sizes. However, even though

not optimal for this benchmark, the choice to run some fraction of
the computation on the CPU is also available to the autotuner.

Intuitively, when blur size (kernel’s width) is large, implement-
ing the separable convolution as a pair of 1D passes over the data,
first in the horizontal and then in the vertical direction, performs
asymptotically less work than a single 2D convolution pass.
Starting each block of work with an extra phase which prefetches
a block of In into scratchpad memory shared by all processors in
the block saves memory bandwidth compared to separately loading
many overlapping inputs through the (slower) main memory
hierarchy. But when the kernel size is small, the overhead (in
bandwidth for intermediate results, and in kernel invocations) of
multiple passes overtakes the computational complexity advantage
of separable computation, making a single 2D pass faster, and
the overhead of explicit prefetching into OpenCL local memory
cannot be offset by the smaller number of redundant loads saved
across a block of work. Where these tradeoffs dominate varies
between machines. And the underlying machines vary further: on
an OpenCL target where the shared memory maps to the same
caches and buses used for all loads and stores, the explicit prefetch
phase nearly always represents wasted work.

Figure 2 shows the running times of four distinct OpenCL
choices (2D Convolution and Separable Convolution, each with
and without local memory prefetching) generated by PetaBricks for
SeparableConvolution, on three different machines (described
in Section 6.1), over kernel sizes from 3-17. The ideal choice
(the lowest line at a given point) varies among the four choices,
depending on both the targeted machine and the kernel size. As
expected, the execution times of the single-pass 2D algorithms
increase faster than those of the two-pass separable algorithms as
the kernel size increases, and the use of scratchpad memory helps
little when the kernel size is small and worsens the performance on
the CPU OpenCL runtime. But how exactly these effects interact,
and the relative behavior of each choice, varies substantially across
machines.

In short, simply mapping this program to the OpenCL runtime is
not sufficient. How it is mapped (whether or not to prefetch shared
inputs into scratchpad memory), and which algorithms to use, is
a complex choice, highly dependent on the specific workload and
target architecture.

The choices we make in automatically mapping to OpenCL are
described further in the next section, while more detailed empirical
evaluation and discussion of the best choices for this and other
benchmarks on a diverse set of heterogeneous machines is given
in Section 6.



transform SeparableConvolution
from In[w, h], Kernel[KWIDTH]
to Out[w−KWIDTH+1, h−KWIDTH+1]
{

// Choice 1: single pass 2D convolution
to(Out out) from(In in, Kernel kernel) {

Convolve2D(out, in, kernel);
}

// Choice 2: two−pass separable convolution
to(Out out) from(In in, Kernel kernel)
using(buffer[w−KWIDTH+1, h]) {

ConvolveRows(buffer, in, kernel);
ConvolveColumns(out, buffer, kernel);
}
}

transform Convolve2D
from In[w, h], Kernel[KWIDTH]
to Out[w−KWIDTH+1, h−KWIDTH+1]
{

Out.cell(x,y)
from(In.region(x, y, x+KWIDTH+1, y+KWIDTH+1) in, Kernel kernel)
{

ElementT sum = 0;
for(int x = 0; x < KWIDTH; x++)

for(int y = 0; y < KWIDTH; y++)
sum += in.cell(x,y) ∗ kernel.cell(x) ∗ kernel.cell(y);

return sum;
}
}

transform ConvolveRows
from In[w, h], Kernel[KWIDTH]
to Out[w−KWIDTH+1, h]
{

Out.cell(x,y)
from(In.region(x, y, x+KWIDTH, y+1) in, Kernel kernel)
{

ElementT sum = 0;
for(int i = 0; i < KWIDTH; i++)

sum += in.cell(i,0) ∗ kernel.cell(i);
return sum;
}
}

transform ConvolveColumns
from In[w, h], Kernel[KWIDTH]
to Out[w, h−KWIDTH+1]
{

Out.cell(x,y)
from(In.region(x, y, x+1, y+KWIDTH) in, Kernel kernel)
{

ElementT sum = 0;
for(int i = 0; i < KWIDTH; i++)

sum += in.cell(0,i) ∗ kernel.cell(i);
return sum;
}
}

Figure 1. PetaBricks code for SeparableConvolution. The
top-level transform computes Out from In and Kernel by
either computing a single-pass 2D convolution, or computing
two separate 1D convolutions and storing intermediate results in
buffer. Our compiler maps this program to multiple different
executables which perform different algorithms (separable vs. 2D
blur), and map to the GPU in different ways.
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Figure 3. Flow for the compilation of a PetaBricks program with
a single transform. (Additional transforms would cause the center
part of the diagram to be duplicated.)

3. Compiling PetaBricks for Heterogeneous
Machines

Figure 3 displays the general flow for the compilation of a
PetaBricks transform. Compilation is split into two representations.
The first representation operates at the rule level, and is similar
to a traditional high level sequential intermediate representation.
The second representation operates at the transform level, and is
responsible for managing choices and for code synthesis.

The main transform level representation is the choice depen-
dency graph, which is the primary way that choices are represented
in PetaBricks. At a high level, the information contained in the
choice dependency graph is similar to a familiar data dependency
graph, however, the data is represented as an “inverse” of that
graph: data dependencies are represented by vertices, while rules
are represented by graph hyperedges. Additionally, data may be
split into multiple vertices in the choice dependency graph if the
transform contains rules that operate on just subregions of that data.
The PetaBricks compiler uses this graph to manage code choices
and to synthesize the outer control flow of the rules.

The final phase of compilation generates an output binary and
a training information file containing static analysis information.
These two outputs are used by the autotuner (described in
Section 5), to search the space of possible algorithmic choices and
other parameters. Autotuning creates a choice configuration file,
which can either be used by the output binary to run directly or can
be fed back into the compiler to allow additional optimizations.

3.1 OpenCL Kernel Generation
Since the PetaBricks language is more general (and supports calling
arbitrary C/C++ code), only a subset of a PetaBricks program
can be converted into OpenCL kernels. The process of generating
additional choices for OpenCL execution is done early in the
compilation process, before scheduling. The conversion process
consists of three phases that are applied to each original user
defined rule to inject equivalent synthetic OpenCL rules when
possible.

In the first phase, a dependency analysis is performed to
determine if the execution pattern of the rule fits into the OpenCL
execution model. Sequential dependency patterns and data parallel
dependency patterns can both be mapped to OpenCL kernels, but
more complex parallel patterns, such as wavefront parallelism, can
not be in our current implementation. It is possible that some sets
of algorithmic choices will permit a mapping while others will
not. The choice dependency graph is analyzed to determine if a
rule can be mapped to OpenCL. The analysis looks at direction of
the computed dependency for the strongly connected component
associated with each of the rule’s outputs. If there is no dependency,
or the dependency is eliminated by selecting the rule choice under



consideration, then the outer dependency pattern of the rule can be
mapped to OpenCL.

If a rule passes the first phase, it goes to the second phase
where the body of the transform is converted into OpenCL code.
This phase includes a number of syntactic conversions. It is also
responsible for rewriting data accesses to use GPU global memory,
detecting a number of language constructs, such as calls to external
libraries, that can not be mapped to OpenCL, and disqualifying
a rule from being converted to OpenCL. This phase can also
detect some language constructs (such as inline native code),
which can not be supported by OpenCL. The majority of these
constructs are detected statically; however, there are a few more
subtle requirements, sometimes OpenCL-implementation specific,
which we detect by attempting to compile the resulting transform
and rejecting synthetic OpenCL rules that do not compile.

The third phase attempts to optimize the basic version of
OpenCL codes generated from the second phase by utilizing GPU
local memory, known as OpenCL local memory or CUDA shared
memory. For a subset of the mapped OpenCL rules, the local
memory version can be generated. To do so, we analyze input data
access pattern. A bounding box is a rectangular region of an input
matrix that is used for computing an entry of the output matrix. If
the size of the bounding box is a constant greater than one, then
the local memory version of the GPU code is created; if the size
of the bounding box is one, there is no need to copy the data into
local memory because threads that share the same local memory
never access the same data. The local memory version consists of
two parts. First, all work-items on the GPU cooperate to load the
data into local memory that will be accessed by the work-group
they belong to. The second part is the actual computation derived
from the basic version by replacing global memory accesses with
local memory accesses. This local memory version is presented as
a choice to the autotuner.

3.2 Data Movement Analysis
A second group of OpenCL analyses are performed at scheduling
time in the compiler for determining how data is copied in and
out of GPU memory. The PetaBricks compiler generates a unique
schedule for each assignment of choices in a transform. These
schedules represent parallelism as dependency trees that are given
to the workstealing runtime. After each schedule is generated, it
is analyzed for GPU data movement requirements. This analysis
looks at preceding rule applications in the schedule and classifies
applicable output regions generated on the GPU into three states:

• must copy-out regions are those that are immediately followed
by a rule that executes on the CPU in the current schedule. For
these regions, data is copied eagerly.
• reused regions are those immediately followed by another rule

on the GPU. For these regions the data is left in GPU memory
between rule applications.
• may copy-out are regions followed by dynamic control flow

which we cannot analyze statically. For these regions, we
employ a lazy copy-out strategy. A check is inserted before any
code that may consume one of these regions to ensure that the
required data is in CPU memory. If it is not, then the copy-out
is performed when the data is requested.

Depending on the result of this analysis, tasks to prepare, copy-
in, execute, and check copy-out status are inserted into the schedule
by the compiler.

4. Runtime System
This section describes the runtime tasks, the workstealing model
for CPU tasks, the work-pushing model for GPU tasks, and the

Figure 4. Overview of the runtime system. Worker threads use
workstealing among themselves, and the GPU management thread
only receives works that are pushed by the workers. Tasks exist
in both a runnable and non-runnable state. Runnable tasks exist in
deques of different threads, while non-runnable tasks are accessible
only through dependency pointers in other tasks.

integration of the two models. Figure 4 presents an overview of the
different parts of the system that will be described in this section.

4.1 PetaBricks Workstealing Task Model
The PetaBricks runtime uses a workstealing mechanism similar to
the one introduced in Cilk [11]. Instead of a stack, each thread has
a THE-protocol [11] deque of tasks. Each thread continually pops
tasks off the top of its deque and executes them, when tasks are
created they are pushed onto the top of the local deque of the thread
creating the task. When a thread is out of work, it choses a random
victim thread and attempts to steal work off the bottom of that
thread’s deque. When starting a transform, much of the scheduling
work is deferred in a continuation task that can be stolen by another
thread.

Unlike Cilk, the PetaBricks task model supports arbitrary (non-
cyclic) dependency graphs between tasks. To support this, dynamic
dependency pointers are maintained from each incomplete task to
those tasks that depend on it. When a task completes, it may return
a continuation task to which all of its dependents are forwarded.
Since task dependencies for dependent tasks are created in parallel
to a task being executed, some care must be taken when managing
tasks. Each task has a state, a count of dependencies, and a list of
pointers to dependent tasks. A task can be in one of 5 states:

• new task is the initial state for a task. Dependencies may
only be added to a task while it is in the new state, and
those tasks that the new task depends on have to be tasks not
already in the complete state. Adding a dependency to a task
atomically increments the task’s dependency count and adds the
task to the appropriate dependents lists, following any needed
continuation pointers. When dependency creation is finished,
the task transitions to a runnable task if its dependency count is
zero, otherwise to a non-runnable task.
• non-runnable task is the state for tasks whose dependency

count is greater than zero. These tasks are waiting for other
tasks to complete. Non-runnable tasks are stored only in the
dependents lists of other tasks and are not stored in any
central or thread-specific location. The task completion that
eventually decrements the dependency count from one to zero
is responsible for enqueuing the task in its thread-local deque.
• runnable task is the state for tasks that have zero dependencies

and can be executed. These tasks are either being executed or
are in exactly one thread-local deque of tasks. Runable tasks can
be stolen. When executed, if the task returns a continuation task,



it transitions into the continued state, otherwise, it transitions to
the complete state.
• complete task is the state for tasks that have already been

executed and did not result in a continuation task. When a task
becomes complete, it decrements the dependency count of each
of its dependents and enqueues any dependent that becomes
runnable. The dependents list is then cleared. Any subsequent
attempt to depend on this task results in a no-op.
• continued task is the state for tasks that have been executed and

returned a continuation. When a task enters the continued state a
pointer is stored to the continuation task and the dependents list
is transferred to the continuation task. Subsequent attempts to
depend on this task instead depend on the continuation task (and
possibly, recursively, a continuation of the continuation task).

4.2 GPU Management Thread and GPU Tasks
In this highly decentralized model, managing a GPU accelerator
presents some challenges. First, for performance, it is important
to overlap data transfer operations with computation. Second, one
does not want to have many worker threads blocking and waiting
for GPU operations to complete.

To address these challenges, we add a dedicated GPU man-
agement thread that is responsible for keeping track of all data
that resides in GPU memory and schedule operations on the GPU.
It operates using the same task representation as CPU threads’,
allowing dependencies between GPU and CPU tasks. A tasks is
marked as either GPU or CPU task. We use workstealing scheme
to manage CPU tasks, but work-pushing scheme to handle GPU
tasks. CPU worker threads’ deques can only contain CPU tasks,
and the GPU management thread’s FIFO queue can only contain
GPU tasks.

Figure 5 depicts what happens when a task becomes runnable
in different scenarios. We define the term cause as follow. Task
A causes task B to become runnable when task A satisfies the
last dependency of task B; more precisely, task A decrements the
dependency count of task B to zero. When a GPU task becomes
runnable, it is pushed to the bottom of the GPU management
thread’s queue as shown in Figure 5(a). When a GPU task causes
a CPU task to become runnable, the GPU management thread
chooses a random CPU worker and pushes the task to the bottom
of that thread’s deque as shown in Figure 5(b). When a CPU task
causes another CPU task to become runnable, the CPU worker that
runs the former task pushes the newly runnable task to the top of
its own local deque as shown in Figure 5(c).

There are four classes of GPU tasks that are run by the GPU
management thread. For each execution of a GPU kernel, there are
one prepare task, zero or more copy-in tasks, one execute task, and
zero or more copy-out completion tasks.

• Prepare tasks allocate buffers on the GPU, and update metadata
for GPU execution.
• Copy-in tasks copy the required input data to the GPU. One

copy-in task is responsible for one input. This task performs a
non-blocking write to a GPU buffer and becomes a complete
immediately after the call, so the GPU manager thread does not
have to wait and can execute the next task in its queue right
away.
• Execute tasks initiate the asynchronous execution of the kernel,

perform non-blocking reads from GPU buffers to must copy-out
regions, and put may copy-out regions into pending storage.
• Copy-out completion tasks check the status of the non-blocking

reads called by the execute task. If the status of a read is
complete, the copy-out completion task corresponding to that
output data transitions to the complete state. If the read is not

complete, the GPU manager thread pushes the task back to the
end of its queue.

There is no dependency between GPU tasks because the GPU
management thread only runs one task at a time; the GPU
tasks associated to one GPU kernel execution only need to be
enqueued by following order: prepare, copy-in, execute, and copy-
out completion, to ensure the correctness. However, CPU tasks may
depend on GPU copy-out completion tasks.

4.3 Memory Management
GPU memory is allocated and managed by the GPU management
thread. The GPU management thread keeps a table of information
about data stored in the GPU. Each region stored on the GPU can
either be a copy of a region of a matrix in main memory or an output
buffer for newly computed data that must eventually be copied
back to main memory. The GPU management thread is responsible
for releasing buffers that become stale because the copy in main
memory has been written to and for copying data back to main
memory when the data is needed or when it has been flagged for
eager copy-out.

The memory management process includes various optimiza-
tions to minimize data transfer between the GPU and the CPU.
Before we further explain our implementation, the term matrix and
region should be clarified. A matrix is an input or an output of
a transform, and is an n-dimensional dense array of elements. A
region is a part of a matrix, defined by a start coordinate and size
that is an input or an output of a rule.

Copy-in Management Before the GPU management thread
executes a copy-in task, it will check whether the data is already
on the GPU. It can already be on the GPU either if it was copied in
for another task execution or if it was the output of another task on
the GPU. If all data that will be copied in by the task is already on
the GPU, then the GPU management thread will change the status
of that copy-in task to complete without actually executing the task,
otherwise it will perform the required copy.

Copy-out Management A single output matrix might be gener-
ated by multiple rules in a transform. For example, one task might
generate the interior elements of a matrix and other tasks will
generate the edges and corners. Instead of creating multiple small
buffers on the GPU for these multiple rule outputs, it is often more
efficient to create one big buffer for the entire matrix and have the
individual tasks output to regions of this buffer. Creating one buffer
will take less time than creating multiple buffers because there is
an overhead associated with each read from GPU memory, and
copying out multiple regions individually requires extra copying
to consolidate the data back to the original buffer. It is also possible
that some regions of a matrix will be generated on the CPU while
others will be generated on the GPU. Our code generation and
memory management needs to handle these more complex cases
to keep track of which regions of a matrix have been written.

In order to apply this optimization, we use a static analysis for
each possible schedule to determine which regions of the matrix
are generated on the GPU. The GPU management thread will wait
until all of the individual regions have been computed to change the
state of the larger matrix.

CPU-GPU Work Balancing If a rule can be run on GPU, choices
of how much data should be computed on the GPU are presented
to our autotuner. At the extremes, the entire rule could computed
on the GPU, or the entire rule could be computed on the CPU.
We implement the CPU-GPU work balancing feature by having
the autotuner pick a CPU/GPU ratio that defines how much of the
data should be computed on each device. This ratio can be set in
fixed 1/8th increments. The GPU-CPU ratio shared among all the
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(b) The GPU management thread pushes a CPU
task to the bottom of a random CPU worker’s
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(c) A CPU worker pushes a CPU task to the top
of its own deque.

Figure 5. Three different cases when a task become runnable. The events progress from (1) to (3). Green tasks are GPU non-runnable tasks.
Grey tasks are CPU non-runnable tasks.

rules in the same transform because they compute the same matrix
but different regions. The system divides the matrix so that the first
part is on GPU and the second part is on CPU.

5. Autotuner
This section describes the PetaBricks autotuner representation,
the evolutionary autotuning algorithm, and how the synthesized
OpenCL choices are represented to the tuner.

5.1 Autotuning Representation
Choices are represented in a configuration file that contains
three types of structures. The first type is selectors which
allow the autotuner to make algorithmic choices. Selectors can
make different decisions when called with different input sizes
dynamically. Using this mechanism, selectors can be used by the
autotuner to construct poly-algorithms that dynamically switch
algorithms at recursive call sites. Formally, a selector s consists of
~Cs = [cs,1, . . . , cs,m−1] ∪ ~As = [αs,1, . . . , αs,m] where ~Cs are

input size cutoffs associated with algorithms ~As. During program
execution the runtime function SELECT chooses an algorithm
depending on the current input size by referencing the selector as
follows:

SELECT (input, s) = αs,i s.t. cs,i > size(input) ≥ cs,i−1

where cs,0 = 0 and cs,m =∞. The components of ~As are indices
into a discrete set of applicable algorithmic choices available to s,
which we denote Algorithmss.

In addition to these algorithmic choice selectors, the con-
figuration file contains many other discrete tunable parameters.
These tunable parameters include number of OpenCL work-items
in the work-group, sequential/parallel cutoffs, and user defined
parameters. Each tunable parameter is an integer with a positive
bounded range.

5.2 Autotuning Algorithm
The autotuner uses an evolutionary algorithm to search through
the available choice space. It maintains a population of candidate

algorithms which it continually expands using a set of mutators
and prunes by performance in order to allow the population to
evolve more optimal algorithms. The input sizes used for testing
during this process grow exponentially, which naturally exploits
any optimal substructure inherent to most programs.

A key aspect of the autotuning algorithm is the mutation
process. The mutation process is asexual, in that there is only
a single parent algorithm for each newly created candidate.
Additionally, newly created algorithms are only added to the
population if they outperform the parent algorithm they were
created from. Mutators are functions that create a new algorithm
configuration by changing an existing configuration. The set of
mutator functions is different for each program, and is generated
fully automatically with the static analysis information extracted
by the PetaBicks compiler.

There are different types of mutation operators that operate on
specific parts of the program configuration. Selector manipulation
mutators either add, remove, or change a level in a specific selector
represented in the choice configuration file. Synthetic function
manipulation mutators apply a change to a range of the underlying
parameters based on the current input size being tested. Finally,
tunable manipulation mutators randomly change a tunable value.
Values that are compared to an input size, such as cutoffs, are
scaled randomly by a value taken from a lognormal distribution.
This means that small changes are more likely than large changes
and a value is equally likely be halved as it is to be doubled. Values
choosing from a set of choices, such as an algorithm, are chosen
uniform randomly when mutated.

5.3 GPU Choice Representation to Autotuner
The compiler exposes four classes of GPU choices to the autotuner.
First, there is the decision of if and when to use the GPU. This is
encoded as an algorithmic choice in the selectors constructed by
the autotuner. The autotuner can construct selectors that use the
GPU for some input sizes and not others. The autotuner can also
construct poly-algorithms that run some parts of the computation
on the GPU and other parts on the CPU.

The second type of choice is memory mapping from PetaBricks



code to OpenCL. The choice indicates whether or not to use the
local memory of the device when possible. This choice exists
only if the OpenCL kernel with local memory version of a rule
is generated. This is also mapped to an algorithmic choice using a
selector constructed by to autotuner.

The third type is the number of work-items in the work-
groups (or so called local work size) of each OpenCL kernel,
since assigning the right local work size is a common optimization
for GPU computing. These parameters are mapped to tunable
values that the autotuner can explore independently of algorithmic
choices.

The final one is GPU-CPU workload ratio of each transform,
which defines what percentage of a region should be computed
on the GPU. To limit the search space size, the possible ratios
restricted to multiples of 1/8.

In a big picture, every transform provides 12 levels of
algorithmic choices for 12 different ranges of input sizes. Note
that all levels of the same transform have the same number
of algorithmic choices. For example, in SeparableConvolution
configuration, each level of each Convolve* transform has three
possible choices: using CPU backend, using OpenCL backend
with global memory only, and using OpenCL backend with local
memory optimization. Each Convolve* has two OpenCL kernels,
so each of them has its own tunable parameters for local work
size and GPU-CPU workload ratio. Apart from OpenCL related
parameters, the configuration also includes other parameters such
as split size for CPU work-stealing model, number of execution
threads on CPU, and a sequential/parallel cutoff.

5.4 Challenges with Runtime Kernel Compilation
The PetaBricks autotuning approach runs large numbers of tests
on small input sizes in order to quickly explore the choice space
and seed exploration for larger input sizes. With only the CPU,
these tests on small input sizes are very cheap and greatly improve
convergence time. However, with our OpenCL backend these small
tests take a much larger amount of time, because OpenCL kernels
are compiled dynamically at runtime. These kernel compiles
represent a fixed startup cost, often on the order of a few seconds,
that dominate execution time for small input sizes. This factor
increases autotuning time.

To address this problem we use two techniques. First, we
cache the intermediate representation (IR) used by the OpenCL
compiler. The first time we run a program, we store the OpenCL
runtime-specific IR for each compiled kernel with the hash of the
source for that kernel. This IR is reused in subsequent executions
in order to skip the parsing and optimization phases of kernel
compilation. Second, we adjusted the parameters of the autotuner
so that it runs fewer tests at small input sizes. This involved both
skipping extremely small input sizes entirely and running fewer
tests on the smaller input sizes we do use. The result of these
optimizations reduced typical training times from many days for
some benchmarks to an average of 5.2 hours. This training time
is still heavily influenced by architecture-specific JITing, which
OpenCL does not allow to be cached. Full binary caching, as
allowed by other languages such as CUDA, would further reduce
training times.

6. Experimental Results
Our experimental results explore the extent to which different
heterogeneous systems require different configurations to obtain
optimal performance. To this end, our experiments test how
configurations tuned for one heterogeneous system perform when
run on a different system. We examine these differences both by
testing relative performance and by examining the configurations
and algorithmic choices of these tuned configurations.

Name # Possible
Configs

Generated
OpenCL
Kernels

Mean
Autotuning
Time

Testing
Input
Size

Black-Sholes 10130 1 3.09 hours 500000

Poisson2D SOR 101358 25 15.37 hours 20482

SeparableConv. 101358 9 3.82 hours 35202

Sort 10920 7 3.56 hours 220

Strassen 101509 9 3.05 hours 10242

SVD 102435 8 1.79 hours 2562

Tridiagonal Solver 101040 8 5.56 hours 10242

Figure 8. Properties of the benchmarks. The number of configura-
tions are calculated from the parameters described in Section 5.3.

6.1 Methodology
Figure 9 lists the representative test systems used in our experi-
ments and assigns code names that will be used in the remainder
of the section. We chose these machines to represent three diverse
systems a program may run on. Desktop represents a high-end
gaming system with a powerful processor and a graphics card.
Server represents a large throughput-oriented multicore system one
might find in a data center. It does not have a graphics card, we
instead use a CPU OpenCL runtime that creates optimized parallel
SSE code from OpenCL kernels. Laptop represents a laptop (it is
actually a Mac Mini), with a low-power mobile processor and a
graphics card. Together, our test systems cover graphics cards from
both AMD and NVIDIA, use three different OpenCL runtimes,
have two different operating systems, and range in cores from 2
to 32.

In our experiments we first create three program configurations
by autotuning: Desktop Config is the configuration tuned on
Desktop; Server Config is the configuration tuned on Server; and
Laptop Config is the configuration tuned on Laptop.

Next, we run each of these three configurations on each of our
three machines. Since we are migrating configurations between
machines with different numbers of processors, for fairness, we
remove the thread count parameter from the search space and set
the number of threads equal to the number of processors on the
current machine being tested. (On Server, the number of threads is
set to 16 which provides better performance on every benchmark.)

Finally, for some benchmarks, we also include baseline results
for comparison. We do this either by writing a PetaBricks program
configuration by hand, by running OpenCL programs included as
sample code in the NVIDIA OpenCL SDK, or by running CUDPP
applications. We use the label Hand-coded OpenCL to indicate
the performance of a standalone OpenCL program not using our
system. These baselines are described in detail for each benchmark.

Figure 8 lists properties of each of our benchmarks from the
PetaBricks benchmark suite. The configuration space is large,
ranging from 10130 to 102435. Our system automatically creates
up to 25 OpenCL kernels per benchmark. Average autotuning time
was 5.2 hours. This training time is larger as a result of overheads
from OpenCL kernel compilation, which dominate tuning time for
many benchmarks. Individual benchmarks are described in more
detail in the following section.

6.2 Benchmark Results and Analysis
Figure 6 summarizes the auto tuned configurations for each
benchmark and Figure 7 shows the performance of each of
these configurations on each system. Detailed analysis for each
benchmark is provided in this section, and a more high level
overview is provided in the next section.



Desktop Config Server Config Laptop Config

Black-Sholes 100% on GPU 100% on OpenCL Concurrently 25% on CPU and 75% on
GPU

Poisson2D SOR Split on CPU followed by compute on
GPU

Split some parts on OpenCL followed by
compute on CPU

Split on CPU followed by compute on
GPU

SeparableConv. 1D kernel+local memory on GPU 1D kernel on OpenCL 2D kernel+local memory on GPU

Sort
Polyalgorithm: above 174762 2MS
(PM), then QS until 64294, then 4MS
until 341, then IS on CPU1

Polyalgorithm: above 7622 4MS, then
2MS until 2730, then IS on CPU1

Polyalgorithm: above 76830 4MS (PM),
then 2MS until 8801 (above 34266 PM),
then MS4 until 226, then IS on CPU1

Strassen Data parallel on GPU
8-way parallel recursive decomposition
on CPU, call LAPACK when < 682 ×
682

Directly call LAPACK on CPU

SVD

First phase: task parallism between
CPU/GPU; matrix multiply: 8-way par-
allel recursive decomposition on CPU,
call LAPACK when < 42× 42

First phase: all on CPU; matrix multiply:
8-way parallel recursive decomposition
on CPU, call LAPACK when < 170 ×
170

First phase: all on CPU; matrix multiply:
4-way parallel recursive decomposition
on CPU, call LAPACK when < 85× 85

Tridiagonal Solver Cyclic reduction on GPU Direct solve on CPU Direct solve on CPU

Figure 6. Summary of the different autotuned configurations for each benchmark, focusing on the primary differences between the
configurations. 1For sort we use the abbreviations: IS = insertion sort, 2MS = 2-way mergesort, 4MS = 4-way mergesort, QS = quicksort,
PM = with parallel merge.
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Figure 7. Benchmark performance when varying the machine and the program configuration. Execution time on each machine is normalized
to the natively autotuned configuration. Lower is better. 7(c), 7(d), and 7(e) include Hand-coded OpenCL as a baseline taken from the NVIDIA
SDK sample code. This baseline uses NVIDIA-specific constructs and only runs on our Desktop system. These hand-coded OpenCL baselines
implement 1D separable convolution, radix sort, and matrix multiply respectively. As additional baselines, 7(b) includes a CPU-only Config
which uses a configuration autotuned with OpenCL choices disabled and 7(d) includes GPU-only Config which uses PetaBricks bitonic sort
on the GPU.



Codename CPU(s) Cores GPU OS OpenCL Runtime
Desktop Core i7 920 @2.67GHz 4 NVIDIA Tesla C2070 Debian 5.0 GNU/Linux CUDA Toolkit 4.21

Server 4× Xeon X7550 @2GHz 32 None Debian 5.0 GNU/Linux AMD Accelerated Parallel Processing SDK 2.52

Laptop Core i5 2520M @2.5GHz 2 AMD Radeon HD 6630M Mac OS X Lion (10.7.2) Xcode 4.21

Figure 9. Properties of the representative test systems and the code names used to identify them in results. The OpenCL runtimes marked 1

targets the GPUs of the machines, while 2 targets the CPU by generating optimized SSE code.

Black-Sholes The Black-Scholes benchmark results (Figure 7(a))
show that on some machines it is fastest to divide the data and com-
pute part of the output on the CPU and another part concurrently
on the GPU. Black-Scholes implements a mathematical model of
a financial market to solve for the price of European options. Each
entry of the output matrix can be computed from the input matrix
by applying the Black-Scholes formula.

The autotuned Black-Scholes configurations on the Desktop
and Server both perform all computation using the GPU/OpenCL
backend, while the configuration on the Laptop divides the work
such that 25% of the computation is performed on the CPU, and
75% is performed on the GPU. This 25/75 split provides a 1.3x
speedup over using only the GPU on the Laptop, while such a split
produces a 7x slowdown on the other two systems.

The reason why these configurations perform this way is the
OpenCL performance for Black-Sholes is an order of magnitude
better than the CPU performance on the Desktop and Server.
However, on the laptop the relative performance of the GPU is only
about 4x the performance of the CPU. This can be seen in the CPU-
only Config bar in Figure 7(a), which is a baseline configuration
that does not use the GPU/OpenCL backend. On the laptop, where
the relative performance of the two processors is close, exploiting
heterogeneous parallelism between the CPU and the GPU results
in performance gains.

Poisson2D SOR The Poisson2D SOR benchmark (Figure 7(b))
shows that the choice of which backend is best for each phase of the
computation can change between machines. This benchmark solves
Poisson’s equation using Red-Black Successive Over-Relaxation
(SOR). Before main iteration, the algorithm splits the input matrix
into separate buffers of red and black cells for cache efficiency.

In the Desktop and Laptop tuned configuration, this splitting
is performed on the CPU and then actual iterations are performed
using the OpenCL GPU backed. In the Server configuration, nearly
the opposite happens; the OpenCL backend is used for splitting
a large area of the matrix, and the CPU backend is used for the
main iterations. The reason for this switch is the very different
performance profiles of the OpenCL backends. The Desktop and
Laptop utilize actual GPUs while the Server OpenCL backend
shares the CPU.

Separable Convolution The Separable Convolution benchmark
(Figure 7(c)) highights the effect of algorithmic choices on
the GPU. Three configurations, all using only OpenCL for
computation, provide very different performance on each machine.
This benchmark is used as a driving example in Section 2.1, which
describes the choices benchmark in more detail. At width 7, shown
here, Desktop performs best using 1D separable convolution on the
GPU with the GPU local memory. Laptop, with the less powerful
GPU, performs best using local memory but with the single-pass
2D convolution algorithm, because the overhead of synchronization
and creating an extra buffer to store the intermediate results
between the two passes dominates the computational savings of
the separable algorithm. The best configuration on Server uses
the OpenCL version of separable convolution, but without local
memory prefetching, since the CPUs’ caches perform best here
without explicit prefetches.

The results also show 2.3x better performance than OpenCL
baseline implementation taken from the OpenCL samples in the
NVIDIA SDK (Figure 7(c)). Our implementation differs from this
sample code in that in our generated code each work-item computes
exactly one entry of the output, while in the sample code each work-
item computes multiple entries of the output. This optimization
in the sample code not only increases code complexity, but also
results in worse performance than our PetaBricks implementation
on the Tesla C2070. Performance on these machines is complex
and unpredictable, making hard-coded choices often lose to our
automatically inferred results.

Sort The Sort benchmark (Figure 7(d)) shows that for some tasks
it makes sense to run on the CPU. The benchmark includes 7
sorting algorithms: merge sort, parallel merge sort, quick sort,
insertion sort, selection sort, radix sort, and bitonic sort; in addition,
merge sort and parallel merge sort have choices of dividing a region
into two or four subregions. The configuration defines a poly-
algorithm that combines these sort building blocks together into
a hybrid sorting algorithm

None of the tuned configurations choose to use OpenCL in
the main sorting routine (although some helper functions, such
as copy, are mapped to OpenCL). The choices in CPU code are
complex, and result in up to a 2.6x difference in performance
between autotuned configurations. Each configuration is a poly-
algorithm that dynamically changes techniques at recursive call
sites. Desktop uses 2-way merge sort with parallel merge at the top
level, switches to quick sort when sizes of sub-arrays are smaller,
switches to 4-way merge sort with sequential merge when sizes
are even smaller, and finally ends with insertion sort as a base
case when size is less than 341. Server uses 4-way merge sort
with sequential merge, switches to 2-way merge sort when sizes
are smaller, and finally switches to insertion sort when size is less
than 2730. Laptop alternatively switches between 4-way and 2-way
merge sort, uses parallel merge until size is less than 34266, and
switches to insertion sort when size is less than 226.

For comparison, we wrote a configuration by hand that uses
bitonic sort in OpenCL using our system (GPU-only Config
in Figure 7(d)). This configuration is between 1.9 and 5.2x
slower than the native autotuned configuration. Interestingly, this
configuration does beat the Server configuration on both of the
other machines that have GPUs. This means that, if one had the
Server configuration, using the GPU instead would give a speedup,
but not as much of a speedup as re-tuning on the CPU.

As a second baseline, we include the radix sort sample program
from the NVIDIA SDK (Hand-coded OpenCL in Figure 7(d)).
This OpenCL implementation of Sort performs 8.4x worse than
our autotuned configuration and 4.4x worse than our bitonic sort
configuration. The poor performance of both of these GPU Sort
baselines, relative to our autotuned Sort, speak to the difficulty
writing a high performance Sort on the GPU. Researchers have
developed faster methods for GPU sorting, however, these methods
require both an autotuning system and heroic programmer effort [?
], and their performance generally does not account for overhead in
copying data to and from the GPU, which our benchmarks do.



Strassen The Strassen benchmark (Figure 7(e)) shows that
choosing the right configuration for each architecture results in very
large performance gains. The Strassen benchmark performs a dense
matrix-matrix multiplication. The choices include: transposing any
combination of the inputs; four different recursive decompositions,
including Strassen’s algorithm; various blocking methods; naive
matrix multiplication; and calling the LAPACK external library.

Figure 7(e) shows the performance of our Strassen benchmark
with different configurations. Laptop configuration gives a 16.5x
slowdown on Desktop. OpenCL is used in the Desktop config-
uration, and C++/Fortran (through a call to LAPACK) is used
in the Server and Laptop configurations. The large computation
to communication ratio in matrix multiplication stresses the
difference in relative CPU/GPU computational power between
Desktop, with a high performance graphics card, and Laptop, with
a mobile graphics card. This results in the Desktop GPU producing
a speedup compared to its CPU, and the Laptop GPU producing a
slowdown.

Altough Server and Laptop both use CPUs, their optimal
configurations are different. On Server, the best algorithm is to
recursively decompose the matrices in 8-way parallel fashion until
the regions are smaller than a certain size, call LAPACK on
the small regions, and finally combine the data. On Laptop, the
best algorithm is to make a direct call to LAPACK without any
decomposition.

As a baseline, we include the matrix multiplication OpenCL
sample from the NVIDIA SDK (Hand-coded OpenCL in Fig-
ure 7(e)). This baseline runs 1.4x faster than our autotuned
configuration on Desktop. The reason for this difference is the
hand-coded OpenCL uses a number complex manual local memory
optimizations that accumulate partially computed outputs in local
memory shared between work-items. We have not implemented a
similar optimization in our system; however, it would be possible
to automatically perform a similar optimization.

Singular Value Decomposition (SVD) The results for SVD
(Figure 7(f)) are particularly interesting because on some systems
the autotuner constructs a poly-algorithm with task parallel
divisions between the GPU and the CPU, and the complexity of the
benchmark provides a large number of choices in the search space.
This benchmark approximates a matrix through a factorization that
consumes less space. SVD is a variable accuracy benchmark where
many of the choices available to the autotuner, such as how many
eigenvalues to use, impact the quality of of the approximation. The
autotuner must produce an algorithm which meets a given accuracy
target. These variable accuracy features are described in more detail
in [4].

On Desktop, the autotuned configuration divides the work
by using the GPU to compute one matrix and the CPU to
concurrently compute another matrix. Since the computations of
the two matrices are very similar, and the CPU and the GPU have
relatively similar performance for these computations on Desktop,
overall throughput is increased by dividing the work in this way.

This benchmark also demonstrates that the best configurations
of a sub-program might be different when the sub-program is a
part of different applications even running on the same machine.
The SVD benchmark uses the Strassen code to perform matrix
multiplication. However SVD uses matrix multiply on sub-regions
of multiple larger arrays (resulting in different data locality) and
possibly making multiple calls concurrently. Due to the different
data-accessing patterns, the cache behaviors are not the same
on the CPU, the bank conflicts on GPU memory vary, and the
interactions between subsystems change. This makes the best
configurations differ for Strassen inside SVD and in isolation.
While the best matrix multiplication configuration on Desktop for
Strassen in isolation always uses the GPU, the best one for this

benchmark is 8-way parallel recursive decomposition and then
calling LAPACK. The autotuned configurations on Server and
Laptop for this benchmark are also different from Strassen in
isolation.

Tridiagonal Solver The Tridiagonal Solver benchmark (Fig-
ure 7(g)) shows that often algorithmic changes are required to
utilize the GPU. The benchmark solves a system of a equations
where the matrix contains non-zero elements only on cells
neighboring and on the diagonal and includes a variety of
techniques including polyalgorithms. We implement a subset of the
algorithmic choices described in [9, 30].

Similar to the Strassen benchmark, the GPU is only used
on the Desktop machine; however, in order to utilize the GPU,
an algorithmic change is required. Cyclic reduction is the best
algorithm for Desktop when using the GPU. If a machine does
not use OpenCL, it is better to run the sequential algorithm as
demonstrated used on Server and Laptop.

Our best configuration on Desktop is 3.5x slower than
CUDPP[30] on input size 512. Some of this slowdown is a
result of OpenCL being generally slower than CUDA when using
the NVIDIA toolchain. Additionally, our automatically generated
OpenCL kernel is not as highly optimized as CUDPP’s kernel,
which guarantees the efficient use of shared memory without bank
conflicts.

6.3 Results Summary
In all of our benchmarks, algorithmic choices—which traditional
languages and compilers do not expose—play a large role in
performance on heterogeneous systems since the best algorithms
vary not only between machines but also between processors
within a machine. Ultimately, the complex and interdependent
space of best mapping choices seen in these benchmarks would
be very difficult to predict from first principles, alone, but our
empirical exploration effectively and automatically accounts for
many interacting effects on actual machine performance, in each
program on each system.

Taken together, these seven benchmarks demonstrate even more
of the complexity in mapping programs to heterogeneous machines
than any one benchmark alone.

• Strassen shows that choosing the right configuration for
each specific architecture can provide a huge performance
improvement. In this benchmark, choosing to use a data parallel
accelerator can yield large speedups (16.5x) on some machines,
and large slowdowns (4.1x) on others, for the same problem,
depending on the exact characteristics of all heterogeneous
processors in the system.
• Poisson 2D SOR further supports the previous argument by

showing that the optimal placement of computations across the
processors in one system is almost the opposite of another.
• Tridiagonal Solver demonstrates that not only where computa-

tions run, but also which algorithms to use on that particular
resource, can dramatically affect performance.
• Separable Convolution shows that, even when a program is

best run entirely on the data-parallel compute resources, the
best algorithm to use and the best strategy for mapping to the
complex heterogeneous memory hierarchy vary widely both
across machines and across program parameters (kernel size).
• Sort, on the other hand, shows that even parallel problems may

not always be best solved by data parallel accelerators, and that
complex machine-specific algorithmic choice is still essential
to performance on a smaller array of conventional processors.
• SVD shows that the best performance can require mapping por-



tions of a program across all different processor types available,
and together with Strassen, it shows that the best configurations
of the same sub-program in different applications vary on the
same system.
• Finally, while SVD confirms that sometimes it is best to

run different portions of a program on different subsystems
concurrently, Black-Scholes illustrates that sometimes it is best
to run the same portion of the program but different regions of
data across multiple heterogeneous subsystems simultaneously;
therefore, considering the workload balance between processor
types is important to achieve the optimal performance on a
heterogeneous system.

7. Related Work
A number of offline empirical autotuning frameworks have been
developed for building efficient, portable libraries in specific
domains. ATLAS [27] utilizes empirical autotuning to produce
a cache-contained matrix multiply, which is then used in larger
matrix computations in BLAS and LAPACK. FFTW [10] uses em-
pirical autotuning to combine solvers for FFTs. Other autotuning
systems include SPARSITY [14] for sparse matrix computations,
SPIRAL [23] for digital signal processing, and OSKI [26] for
sparse matrix kernels.

The area of iterative compilation contains many projects that
use different machine learning techniques to optimize lower level
compiler optimizations [1, 2, 12, 22]. These projects change both
the order that compiler passes are applied and the types of passes
that are applied. However, these projects do not explore the type
of algorithmic choices that the PetaBricks language exposes, and
these systems create only compile time, not runtime choices.

The use of autotuning techniques is even more commonplace
when optimizing GPGPU programs. Autotuning is typically
applied in a program or domain-specific fashion. Such systems
use autotuners to construct poly-algorithms for solving large
tridiagonal systems [9], for tuning GPU sorting algorithms [?
], autotuning 3D FFT with a focus on padding and bandwidth
optimizations [21], autotuning sparse matrix-vector multiply by
building performance models [8], and to tune dense linear algebra
with a mix of model-driven and empirical techniques [25]. These
techniques are often specific to a problem or class of problems.

Besides problem-specific techniques, there is a high-level
directive-based GPU programming that uses HMPP workbench to
automatically generate CUDA/OpenCL code, and auto-tunes on the
optimization space on the generated GPU kernels [13]. However,
this technique and the previous ones only point towards autotuning
as a necessity in order to get the best performance on modern
GPUs; they do not address how to utilize all available resources
together to achieve the best performance on a heterogeneous
system.

Several methods to efficiently distribute workload between
different devices have been studied. StarPU applies work-stealing
framework to balance work among subsystems [5]. However,
StarPU requires the programmer to write separate CPU and
GPU code, and relies entirely on dynamic work-stealing guided
by automatic hints to distribute tasks. CnC-HC automatically
generates CPU, GPU, and FPGA code and uses a work-stealing
scheduler to distribute work among different devices guided by
manual hints only [24]. Qilin, automatically generates code and
uses adaptive mapping for performance tuning [20]. During the
training run, Qilin executes the program on different input sizes
on CPUs and GPUs separately, and uses the result to determine
workload partitions between the CPUs and the GPUs. However,
the mapping of these systems may not be ideal. Our system
automates the entire process, both translating kernels to different

targets, and empirically determining where they should run in our
hybrid work-stealing/work-pushing runtime. For real applications,
the ideal mapping is globally non-linearly inter-dependent with all
other choices, and our global optimization captures this during
autotuning. Our results demonstrate the importance of global
learning.

CGCM [15] uses a technique for automatic management of
GPU/CPU memory communication. This technique is similar to
our analysis for determining when lazy or eager copy-outs are
used. Their technique uses a conservative reachability analysis to
determine where to insert calls into a runtime that dynamically
tracks and maps data to different memories. They focus on a
number of optimizations to this technique to reduce runtime
overhead. While CGCM manages data movement automatically, it
requires some programmer help when managing parallelism.

A number of other programming languages attempt to make
programming for GPGPU devices easier. CUDA-lite [29], auto-
mates some of the parallelization and memory management tasks
in writing CUDA. JCUDA [28] alleviates many of the difficulties
in using the GPU from Java code. There have also been efforts to
map subsets of C to the GPU [6, 19]. These techniques put affine
data access restrictions on the program. There have been other
efforts to map OpenMP to the GPU [17]. While these efforts make
running code on the GPU easier, they will produce the same code
for each heterogeneous system and do not allow algorithmic choice,
or empirically infer the best mapping for each machine.

Researchers have also studied the relative throughput of the
CPU and the GPU and discovered contradictory findings with
some studies showing 100x performance differences and others
just 2.5x [18]. Our work sheds more light on this debate, showing
that both claims can be correct. The best device to use is highly
dependant both on the architecture and algorithmic choices and
cannot be determined by simple relative performance numbers. We
also show cases where the best throughput is obtained by using both
the CPU and the GPU in parallel.

8. Conclusions
Programmers and compilers collaborate to map problems into
precise machine instructions. There are many choices in how to
map a given problem onto a particular machine. The programmer
typically makes the higher-level choices (e.g. which algorithms
to use), while a compiler will make the lower-level choices
in how to map to a specific machine (e.g. register allocation,
instruction selection, loop transformations). Both the programmer’s
and the compiler’s decisions are often based on heuristic models of
machine performance. Simplistic models of machine performance
are assumed when the programmer performs O analysis or cache
blocking, or when the compiler uses heuristics like minimizing
instructions executed or stack spills.

It is increasingly difficult for a single model to accurately
represent the complex heterogeneous machines in widespread
use today. Further, on these machines, high-level algorithmic
and scheduling choices, and low-level machine mapping choices,
interact in complex ways to influence actual machine performance.
We have found, and our results show, that simultaneous empirical
exploration of algorithmic and machine mapping choices can
effectively compile an array of programs to efficient execution on
modern heterogeneous parallel machines, including both multicore
CPUs and GPUs. The best choices for each heterogeneous machine
are often complex, and map portions of different algorithms in
multiple ways across all processors and memories in the machine.
Our results further show that this full choice space is important to
consider, since the best algorithms and mapping strategies on one
heterogeneous system are often not the same as on another.

Models are still useful in some situations. The search space



of all possible choices in algorithm and machine mapping is
enormous, and many individual choices have optimal substructure,
so reducing the empirical search space with model-driven choices
can be both essential and effective, even when autotuning. Most of
all, models aid human comprehension, which can be essential to
creating new algorithms and optimizations, and new architectures
on which to run them. But compilers should not be wedded
to models and heuristics alone when faced with programs and
machines of ever-increasing complexity.
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