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Abstract—Search-based techniques have been demonstrated
effective in solving complex optimization problems that arise in
domain-specific compilers for machine learning (ML). Unfortu-
nately, deploying such techniques in production compilers is im-
peded by two limitations. First, prior works require factorization
of a computation graph into smaller subgraphs over which search
is applied. This decomposition is not only non-trivial but also
significantly limits the scope of optimization. Second, prior works
require search to be applied in a single stage in the compilation
flow, which does not fit with the multi-stage layered architecture
of most production ML compilers.

This paper presents XTAT, an autotuner for production ML
compilers that can tune both graph-level and subgraph-level
optimizations across multiple compilation stages. XTAT applies
XTAT-M, a flexible search methodology that defines a search
formulation for joint optimizations by accurately modeling the
interactions between different compiler passes. XTAT tunes tensor
layouts, operator fusion decisions, tile sizes, and code generation
parameters in XLA, a production ML compiler, using various
search strategies. In an evaluation across 150 ML training and
inference models on Tensor Processing Units (TPUs) at Google,
XTAT offers up to 2.4× and an average 5% execution time
speedup over the heavily-optimized XLA compiler.
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I. INTRODUCTION

Machine learning (ML) compilers solve multiple optimiza-

tion problems to translate an ML program, typically repre-

sented as a tensor computation graph, to an efficient executable

for a hardware target. Recent works have demonstrated that

search-based techniques can be used to solve many of these

problems effectively [1]–[10]. However, production ML com-

pilers (e.g., XLA [11] and Glow [12]) still rely on heuristics

to solve these problems quickly, albeit often sub-optimally.

Current search-based techniques [1]–[10] have at least one

of the two key shortcomings that prevent them from being

deployed in production ML compilers.

First, they rely on the assumption that performance-critical

optimization decisions are localized within a subgraph and

hence can be made independently from the rest of the graph

[1]–[8]. This is often not the case. For example, decisions

to fuse1 tensor operations affect memory requirements, which

1When operators are fused, intermediate tensors can be used by the
consuming operator directly without saving them to the slow main memory.

in turn affect decisions to rematerialize2 tensors in different

portions of the graph. Furthermore, the subgraph-focused solu-

tions assume that they can easily partition a tensor computation

graph into suitable subgraphs. However, finding an optimal

partitioning for a particular optimization task is a non-trivial

combinatorial optimization problem by itself. A common

strategy is to partition a graph according to the neural network

layers [3], [5], ignoring cross-layer optimization opportunities.

We empirically observed a regression of up to 2.6× and 32%

on average across 150 ML models by limiting fusions in XLA

to be within layers. Furthermore, prior approaches [1]–[10]

have primarily studied inference graphs. Training graphs, on

the other hand, can be up to two orders of magnitude larger

than inference graphs in terms of number of nodes, rendering

subgraph decomposition less effective.

Second, the optimizations enabled in prior works [1]–

[10] are applied at the same stage in the compilation flow,

specifically in the loop transformation stage. However, this is

impractical in production compilers because compiler transfor-

mations are organized as passes to reduce complexity, and have

strict ordering constraints. For example, in the XLA compiler,

tensor layout assignment occurs before operator fusion. This

is required because operator fusion’s goal is to reduce memory

traffic, which is impossible to estimate without layouts. The

automatic cross-replica sharding [13] happens between the

layout and fusion passes. It requires layouts to calculate

parallelization overheads correctly, and must execute before

the fusion pass because otherwise the distribution granularity

becomes coarse, lowering performance gains. Therefore, joint

optimization of layout and fusion cannot occur at the same

compilation stage. To perform joint layout-fusion optimization

using the previous research approaches, all intermediate trans-

formations must be co-optimized too, which does not scale in

practice.

We next discuss our approach to overcome these short-

comings. To address the issue of the optimization scope, we

develop an autotuner for ML compilers that supports tuning

decisions made at both whole graph and subgraph levels.

Specifically, we implement XTAT (pronounced “stat”), an

autotuner for the XLA compiler. XTAT can tune tensor layouts

2Rematerialization reduces memory usage by recomputing a tensor when
it is needed instead of saving it in memory.
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Fig. 1: Overview of XTAT, an autotuner for XLA. XTAT takes as inputs: (a) a program/graph to optimize, (b) a formulation of

the search strategy in XTAT-M, and (c) a formulation of the compiler optimization configurations in XTAT-M. XTAT currently

supports tuning optimization passes highlighted in red. XTAT uses the learned cost model and/or hardware to evaluate the

performance of different optimization configurations and outputs the best configuration found.

and fusion decisions at the graph level, and tune tile sizes3 and

critical code generation parameters at the kernel (subgraph)

level for TPUs [14], [15]. Employing search at the graph level

is challenging due to search spaces that are exponentially large

in the number of nodes. Therefore, it is important to ensure

that the search space for an optimization pass is well designed,

as the design can greatly affect the quality of the final solution

found by a search method. To this end, we present effective

search spaces for optimizations tuned by XTAT.

To tune multiple compiler optimizations at different stages,

we develop a flexible methodology to apply search to multiple

compiler passes, called XTAT-M. The complexity of multi-

stage joint optimizations tuning comes from the fact that

decisions made in one optimization pass affect input graphs

to subsequent passes and, thereby, their configurations and

search spaces. To address this complexity, XTAT-M defines

configuration-update specifications, which co-relate the state

of the intermediate graph left behind by one compiler op-

timization to a partial solution for a subsequent compiler

optimization. Through such specifications, XTAT-M allows

composing search-based strategies in certain passes (e.g., for

layout and fusion) with existing heuristic-based strategies in

intermediate passes (e.g., for cross-replica sharding). Addi-

tionally, XTAT-M enables flexibility to trade off time spent

searching for a solution and solution optimality through a

configurable search schedule. This flexibility is critical to

achieve the best performance given a time budget. Lastly,

XTAT-M allows us to apply a wide range of search techniques

including exhaustive search, simulated annealing, evolutionary

search, model-based optimization, and reinforcement learning.

To summarize this paper’s contributions:

• We develop XTAT-M, a novel methodology to formulate

search for multiple optimizations at different stages of an

ML compiler with a flexible search schedule.

• We build the XTAT autotuner based on XTAT-M to tune

tensor layouts, operator fusion decisions, tile sizes, and

3A tile of tensor is processed at a time to effectively utilize fast memory
(e.g., scratchpad and cache).

code generation parameters in XLA, as shown in Fig. 1.

• XTAT is the first autotuner that can jointly tune multiple

optimizations at different stages of an ML compiler.

• XTAT handles much larger search spaces compared to

prior works since XTAT optimizes at both graph and

subgraph levels. For instance, the number of valid fusion

configurations alone for the EfficientNet training model

with approximately 40,000 nodes is 240,000. In contrast,

prior works [1]–[8] tune one subgraph, which typically

has fewer than 10 nodes, at a time.

• We demonstrate how to incorporate advanced techniques

such as a learned cost model and various search strategies

into XTAT to reduce autotuning time.

• We evaluate XTAT on 150 ML models (comprising both

training and inference models from Google’s production

and research workloads) on TPUs and achieve significant

improvement: up to 2.4× speedup and 5% on average

over the heavily-optimized XLA compiler.

II. XTAT-M: METHODOLOGY & FORMULATIONS

A. Overview

We define a configuration on a graph for an optimization

pass as a collection of per-node configurations that control how

the pass transforms each node in the graph. For example, con-

sider the pass that determines a tensor layout (i.e., a physical

ordering of tensor dimensions in memory). A configuration for

this pass is a collection of physical layouts assigned to tensors

at each node in the graph.

Searching for the best configuration for a compiler opti-

mization involves (i) exploration of candidate configurations,

(ii) application of the optimization pass according to the

candidates, and (iii) evaluation of the output graphs. Imple-

menting these steps for a single optimization is relatively

straightforward, while the quality of results depends on the

expressiveness and compactness of the search space as well

as the capability of the search technique.

However, searching for optimal configurations for multi-

ple optimizations requires that the search satisfies a critical
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condition: the search space and the configuration chosen for
an optimization pass must be consistent with decisions made
in prior passes. For example, consider Fig. 2 with two opti-

mization passes, layout assignment (which determines tensor

layouts) and operator fusion (which fuses several operators

together). Since the performance of a fused node depends on

the layouts of the relevant tensors, the decisions in the fusion

pass must take into account the layouts decided in the prior

pass. Further, the search space for the fusion pass (i.e., the

set of node configurations to consider for search) depends on

the layout assignment since the layout pass may transform the

graph. As shown in Fig. 2, two layout configurations lead to

different input graphs for the fusion pass: one contains a copy
node, while the other does not; as a result, the fusion search

space for the left graph must contain configurations for copy,

but the search space for the right must not.

How can we orchestrate searches for joint optimizations to

satisfy the above condition? To do so, we identify two key

properties that a search should implement. To describe these

properties, consider the scenario where an optimization pass,

say A, is applied before another optimization pass, say B.

1) The ordering between the produced graphs is

g
A(configA)−−−−−−→ g′

B(configB)−−−−−−→ g′′. This ordering implies

that: (i) the graph g′ is a result of applying a candidate

configuration configA selected for A and (ii) the search

space of candidate configurations and a selected

candidate configB for B is based on g′.

2) All configurations are well-formed; a configuration

configB contains valid configurations for all configurable

nodes in g′. Further, when configA is changed, causing

graph g′ to change, configB must be updated to be

compatible with g′ using the best nodes’ configurations

observed so far for B. This ensures that the search for B
does not begin the exploration from scratch.

To realize this orchestration, we develop a generic method-

ology XTAT-M to formulate the interactions between multi-

stage compiler optimizations, and search strategies. Our pro-

posed search methodology is applicable to compilers that

apply multiple optimization passes in sequence.

B. Methodology

The search formulation of XTAT-M is displayed in Fig. 3.

We model the search process as a sequence of search steps.

Each search step takes a set of current candidates C and

produces a new set of candidates C′ for the next round. When

tuning n optimizations, a candidate c in C captures n graphs

(c.graphs) and n configurations (c.configs), where c.graphs[id]
and c.configs[id] are an input graph and a configuration for an

optimization pass id respectively. As color coded in Fig. 3,

XTAT-M allows one to configure its routines to implement

a desired search schedule (red) and search strategy (green),

and tailor the configuration-update procedures to specific op-

timizations (purple). Each search step (SearchStep lines 8–16)

performs the following actions:

Fig. 2: Layout configurations determine the input graphs to
the operator fusion pass. A node is annotated with its output
tensor shape [n0,n1, ...], where ni is the size of dimension i. Layout
{d0,d1, ...} represents minor to major ordering in memory. Applied
configurations are highlighted in red, and other valid configurations
are highlighted in blue. A layout configuration specifies the layouts
of inputs and outputs of influential operators (i.e., convolution and
reshape). The compiler propagates layouts from the influential nodes
to others. A copy operator is inserted when there is a layout mismatch.
A fusion configuration specifies which nodes are fused, where a node
with decision value 1 must be fused with all of its consumers. If a
node being fused has multiple consumers (e.g., add), it is duplicated
(recomputed). The fusion configuration for add is the same (fused)
between left and right, but the outcomes differ; conv is fused in
the right but not in the left scenario. This figure shows operator
fusion directly following layout assignment, but other intermediate
passes can alter the input to the fusion pass further.

• SelectOpt: select an optimization to tune

• GenerateCandidates: develop search candidates

• FixAndApplyCandidate: fix and apply a candidate

• Evaluate: evaluate a candidate

• SelectCandidates: select candidates for the next step

Terminate (line 3) determines when the search stops, e.g.,

when all candidates are explored, or a certain number of steps

have been performed, or the time limit is reached. The search

process also maintains a global ConfStore that captures the

best configurations observed for all optimizations.
1) SelectOpt: The flexibility to control the search schedule

is critical to achieve the best performance given a desired

time budget. Tuning optimizations jointly often enables more

performance improvement opportunities only if we are able

to explore the search space sufficiently. XTAT-M allows

users to configure the search schedule by controlling the

return values of SelectOpt. To tune one optimization pass,

say, B, after another, say A, SelectOpt can return a series

of A,A, ...,B,B, ...,C,C, ... across calls. To enable joint op-
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Global variables: Opts,ConfStore,best_candidate
1: function MAINSEARCH(ginput )
2: C← Init(ginput)
3: while !Terminate() do
4: C = SearchStep(C)
5: end while
6: end function
7:
8: function SEARCHSTEP(C)
9: optid ← SelectOpt(Opts)

10: C′ ←GenerateCandidates(optid ,C)
11: for c : C′ do
12: FixAndApplyCandidate(optid ,c)
13: Evaluate(c)
14: end for
15: return SelectCandidates(C,C′)
16: end function
17:
18: function FIXANDAPPLYCANDIDATE(optid ,c)
19: g← ApplyOpt. . . . . . . . . . . .(optid ,c.graphs[optid],c.configs[optid])

20: // Update configs of later passes to be compatible with g
21: for id : SubsequentOpts(Opts,optid) do
22: c.graphs[id]← g
23: c.configs[id]← InferConfig(c.configs[id],g,ConfStore[id])

24: g← ApplyOpt. . . . . . . . . . . .(id,g,c.configs[id])

25: end for
26: c.graphs[final]← g
27: end function
28:
29: function EVALUATE(c)
30: c.cost ← ExecuteGraph(c.graphs[final])
31: if c.cost < best_candidate.cost then
32: best_candidate← c
33: UpdateStore(ConfStore,c.configs)

34: end if
35: end function
36:
37: function INIT(g)
38: for id : Opts do
39: con f ig←GetInitConfig. . . . . . . . . . . . . . . . (id,g)

40: gcombo[id]← g
41: con f igcombo[id]← con f ig
42: g← ApplyOpt. . . . . . . . . . . .(id,g,con f ig)

43: end for
44: gcombo[ f inal]← g
45: cost ← ExecuteGraph(g)
46: C[0]←{graphs : gcombo,configs : configcombo,cost : cost}
47: return C
48: end function

Fig. 3: Formulation of XTAT-M search methodology.
Routines in red are configured by users to control the search
schedule. Routines in green are implemented by search strategies.
Routines in purple are optimization-specific and essential for joint
optimizations. . . . . . . . . . . . . . . . . . . .Routines in blue are interfaces to retrieve information
from a compiler.

timizations, we can configure SelectOpt to alternate passes:

A,B,C,A,B,C, .... XTAT-M also supports a mixture of sequen-

tial and joint tuning, e.g., tuning A and B jointly followed by

tuning C and D jointly: A,B,A,B, ...,C,D,C,D, .... Note that a

mixed search schedule alone does not enable a joint optimiza-

tion, it is the combination of a mixed search schedule and

candidates fixing (described later in FixAndApplyCandidate)

that enables a joint optimization.

2) GenerateCandidates: XTAT-M lets one apply various

search strategies by implementing GenerateCandidates, which

generates a new set of candidates from the current set of

candidates. Note that a candidate contains configurations for

all optimizations being tuned. GenerateCandidates primarily

focuses on generating new configurations for a specific opti-

mization optid , and optionally new configurations for the sub-

sequent interacting optimizations. Note that a new candidate

created from this routine may be ill-formed; i.e., c.configs
may not be compatible with c.graphs because this routine

changes configurations without updating or considering the

graphs. Consider Fig. 2 as an example, let the left layout and

fusion configurations compose a candidate c. If we mutate

only the layout of c to be the layout shown on the right side

of the figure, the fusion configuration is no longer valid for

the right graph because the copy node has been removed. We

allow GenerateCandidates to generate ill-formed candidates in

this step and then fix them in the next step. This is how we

enable search strategy implementers to develop their search

algorithms without having to deal with complex compiler

transformation effects between interacting optimizations.

3) FixAndApplyCandidate: In this step, we update the

intermediate graphs and the configurations of all optimiza-

tions to be well-formed using ApplyOpt and InferConfig.

ApplyOpt(optid,g,config) transforms g by applying optimiza-

tion id and potentially more optimizations (using compiler’s

heuristics) between id and id+1. For example, when optid is

layout, to obtain the input graph for the fusion pass, we apply

layout assignment pass with respect to config and many more

transformations such as conditional code motion and cross-

replicas sharding. Note that not all of these transformations

are worthy of tuning; XTAT-M enables applying the heuristic-

based decisions for them naturally.

When a configuration for an optimization, say A (e.g.,

layout), is changed by GenerateCandidates, the configurations

for subsequent interacting optimizations, say B (e.g., fusion),

must be updated to be well-formed. InferConfig (line 23)

does so by fixing c.configs[B] to be compatible with the

graph g, generated from applying c.configs[A] for pass A.

InferConfig first identifies the nodes that are unchanged be-

tween g and c.configs[B] and carries forward the configurations

in c.configs[B] for such nodes. For the other nodes in g, it pulls

the best configurations found so far from the global ConfStore
if present; otherwise, it generates optimization-specific de-

faults using GetInitConfig(B,g)[n]. By default, GetInitConfig
returns the default configuration generated by the compiler’s

heuristic, but one can override it to return a random con-

figuration or others for more exploration. The semantics of

InferConfig is shown in the infer-config rule in Fig. 12

in the appendix.

ConfStore[optid][fp(n)] stores the best configuration for op-

timization optid for node n with fingerprint fp(n). Two nodes

are considered to be the same or unchanged if they have

the same fingerprint. This approach of reusing configurations

of unchanged nodes assumes that the configurations of these

nodes still work well in a new context, provided we can

define the unchanged relation appropriately. A simple strategy

is to compare only the nodes’ attributes (e.g., operator type,
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TABLE I: Implementations of search-strategy-specific functions in XTAT-M. Column |C| describes the number of candidates

returned by the function SelectCandidates. Parameters M and K in EVO, MBO, and RL are configurable by users.

Strategy Function GenerateCandidates Function SelectCandidates |C|
Exhaustive Return the next candidate (not visited before). N/A N/A
SA Mutate configurations of some nodes in the current

candidate.
Return either the old or new candidate depend-
ing on their costs and the annealing temperature.

1

EVO Generate M new candidates by crossing over parent
candidates and mutate some nodes’ configurations.

Return the K (where K > M) most recent
(unique) candidates, using costs for tie breaking.

K

MBO Generate M new candidates from the model’s latent state. N/A N/A
RL Generate M new candidates from the learned policy at

the current state (i.e., the current candidate).
Return the best candidate so far. 1

input/output shapes, layouts etc). Fig. 2 shows how this

strategy might infer the fusion configuration on the right from

the left one. The add is identified as unchanged, so add will

be fused with both reshape and conv, but add and conv
are not fused together in the left scenario.

To define unchanged more conservatively, we consider a

context around a node by computing a node’s fingerprint fp(n)
from both its attributes and its neighborhood within k hops. If

k is set to one, only reshape remains unchanged between

the middle left and the middle right graphs in Fig. 2, so we

will not reuse the configuration for add. In practice, k is set

to five for the fusion pass (from hyperparameter tuning). For a

node-level optimization where an optimal configuration for a

node is independent from the rest of the graph, we can simply

set k = 0 to ignore the neighborhood.

4) Evaluate: This step evaluates the performance of a

candidate. If the new best candidate is found, we update

the global ConfStore (line 33). The update overwrites a

previous configuration for a node with respect to fp(n) if

its configuration changes, while retaining configurations for

nodes that do not belong to the candidate, as formalized in

the update-store rule in Fig. 12 in the appendix. It is

important to retain configurations for nodes that do not belong

to the candidate because the current best candidate may not be

optimal and future search steps taken by the search strategy

may favor graphs that contain these nodes.

5) SelectCandidates: The last action is selecting a set of

generated candidates to pass to the next round.

To support tuning an additional pass, one can simply add

the optimization to the Opts list, configure the search schedule

through SelectOpt, set the neighborhood size for fp for that

specific optimization (which can be set through hyperpa-

rameter tuning), and modify the compiler pass to apply the

optimization (ApplyOpt) according to a given configuration.

Note that fixing illegal combinations of configurations is

the key to our joint autotuning methodology. Simply dropping

illegal combinations is insufficient for joint autotuning because

changes applied to one pass configuration without the fix are

often illegal. This means one has to fall back to using default

configurations for later passes, resulting in tuning one pass

after another, but not a joint optimization.

C. Search Strategies

Below, we describe a wide spectrum of search strategies

that we have evaluated. Table I summarizes how the following

search strategies implement routines GenerateCandidate and

SelectCandidate.

1) Exhaustive search within a node: The exhaustive strat-

egy generates a new candidate by selecting the next option

for the current node’s configurations. When all configurations

have been explored for the current node, it moves on to the

next node. This strategy can be used for node (kernel) level

optimizations, such as tile size selection.

2) Simulated annealing (SA): SA mutates a candidate and

probabilistically accepts a new one based on annealing tem-

perature that decreases over time. We have found the following

types of mutation operators to be effective:

• Single-node: mutates the configuration of one randomly

selected node.

• Multi-node: mutates configurations of all nodes indepen-

dently with probability p, where p decreases as a function

of temperature in simulated annealing.

• Group: mutate configurations of a randomly-selected set

of nodes grouped by a certain criterion.

We have empirically observed that a multi-node mutation

works well for fusion autotuning and a combination of group

and single-node mutations works best for layout autotuning.

3) Regularized evolution (EVO): EVO performs evolution-

ary search using a population of K individuals. Each new

individual is generated by selecting two parents from the

population using binary tournament selection, recombining

them with some crossover rate γ , and mutating the recombined

individual with some probability μ . Following [16], to promote

exploration, the population is updated by replacing the oldest

individuals by newly evaluated individuals. In our experiment,

we use the parameters K = 100, γ = 0.2, and μ = 0.01. We also

considered population-based evolutionary optimization using

P3BO [17] but did not find clear performance improvement

over a single evolution optimizer.

4) Model-based optimization (MBO): MBO performs

model-based optimization with automatic model selection

[18]. At each optimization round, a set of candidate regression

models are fit to the data acquired thus far, and their hyper-

parameters are optimized by randomized search and five fold

cross-validation. Models with a cross-validation score ≥ 0.4
are ensembled to define an acquisition function. This function

is then optimized by regularized evolution to generate a new

batch of samples. Candidate models include ridge regression,

random forests, gradient boosting, and neural networks.
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5) Deep reinforcement learning (RL): A deep RL method

(GO) [19] is designed specifically for ML compiler’s graph

optimizations. GO uses a graph neural network (GNN) to

create node embeddings and segmented recurrent attention

layers to capture long-range dependencies that appear in a

computation graph. The policy network transforms the graph

representation into optimization decisions with soft attention.

The learning objective is optimized using Proximal Policy

Optimization (PPO) [20]. Instead of using conventional RL

algorithms, we leverage the existing compiler heuristics by

initializing the search with the default heuristic solution, and

modify the RL sampling stage to encourage more exploitation.

Concretely, we modify the state transition function such that

RL only traverses to a state with a higher reward than the

default configuration’s: S(t) = S(t− 1) if R(t) < R(0), where

state S(t) is the embedding of the fusion configuration at step

t, and R(0) is the reward for the default configuration.

D. Limitations

There are some important optimizations, such as graph

rewrites, that do not naturally lend to a node-configuration-

based representation. In such cases, we believe that XTAT-M
can still be used as a subroutine, where the outer loop applies

rewrites, and for each candidate change, we use XTAT-M to

optimize other optimization decisions. Notice that XTAT-M
does not have to start the search from scratch every iteration

because the global ConfStore persists across all iterations.

Our formulation also does not support tuning an unbounded

number of passes, for example, passes that run until a fixpoint.

III. XTAT: IMPLEMENTATION IN XLA

We develop XTAT based on XTAT-M to tune tensor layouts,

operator fusion decisions, tile sizes, and code generation

parameters in XLA. XTAT’s target accelerator is TPUs [15],

energy-efficient ML accelerators.

A. Background on XLA

XLA is a ML compiler capable of generating code for

various hardware targets [11]. Its workflow can be split into

three stages. In the graph-level passes, XLA uses a graph-

based intermediate representation named High-Level Opera-

tion (HLO) to describe a tensor computation graph. Various

compiler passes transform HLO so that the output graph is

algebraically optimized, and is ready to be mapped onto the

target hardware. At the end of the graph-level phase, the

optimized HLO graph consists of nodes that represent fusions

of multiple operations. We refer to a fused node as a kernel.
Next is the hardware lowering phase; the compiler converts

each individual kernel into instructions that can be executed on

the target hardware. In the third phase, low-level architecture-

specific optimizations are applied, such as VLIW instruction

scheduling, peephole optimizations, and register allocation.

B. XTAT’s Optimization-Specific Search Formulations

We instantiate XTAT-M to tune the most performance-

critical optimization passes in XLA including layout as-

signment, operator fusion, and tile size selection, as well

TABLE II: Instantiation of XTAT-M for specific optimization

passes tuned by XTAT.

Optimization Applicable node Node’s con f ig

layout assignment conv. & reshape input and output layouts
operator fusion fusible node fusion control bit
tile size kernel w/ tiling input and output tile sizes
flags non-comm kernel lowering-phase flag values

as compiler’s flags used during the lowering phase. Layout

assignment and operator fusion effect graph-level changes and

hence are optimized globally. Tile size and flags selection

are kernel-level optimizations and hence are optimized for

each kernel independently. Apart from these optimizations,

XTAT employs the other heuristic-based passes used in XLA.

Our choice of passes to tune was influenced by expert XLA

developers who suggested these optimizations as ones that

significantly affect performance of most ML models. Note

that layout and/or fusion decisions heavily influence other opti-

mizations such as cross-replica sharding and rematerialization.

While rematerialization and operator scheduling are important

for making a program fit in available memory, they do not

typically reduce program’s execution time.

For each optimization pass we tune, we aim to define

a search space that is: (1) expressive, i.e., contain diverse

candidates that lead to optimal outcomes; (2) compact, i.e.,

include only valid candidates, few candidates that have the

same behavior, and not too many more bad candidates than

good ones. We specialize XTAT-M’s generic formulation to

specific optimizations as summarized in Table II. The rest of

this section details the search formulation for each optimiza-

tion. We also describe existing XLA heuristics and alternative

search formulations, which are the baselines in our evaluations.

Layout Assignment: The layout assignment pass chooses

the physical layouts of the input and output tensors of each

node to satisfy constraints from the user’s program, the com-

piler backend, and the underlying hardware, while minimizing

the program’s execution time. An example layout constraint

for convolution on TPUs is that the input and output must

have input feature, output feature, or batch dimensions as

their most minor dimensions. Figure 2 displays the valid

input layouts of conv in blue. Layout {d0,d1, ...} represents

minor to major dimensions, where elements in the most minor

dimension are physically consecutive. If an edge connects an

output to an input with a different layout, the compiler inserts

a copy (transpose) operator to convert the layout. In Fig. 2

(left), the compiler assigns layout {1,0,2} to the output of

add but {0,1,2} to the first input of conv, causing a layout

mismatch, and the insertion of a copy operator. The compiler

must trade-off between selecting the best layouts for each

specific operator and the overhead from copy operators.

Compiler’s heuristic: XLA performs layout assignment in

multiple rounds. Initially, the pass includes only constraints

from the program’s inputs and outputs. In each round, the

layout propagation algorithm propagates layouts from the

constrained operators to others through element-wise, pad, and

slice operators. This optimistic propagation may cause layout
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constraint violations at some operators. After each round, the

pass uses various heuristics — ranging from a rough cost

model to hard-coded decisions depending on the operators

— to rectify the violations. This process continues until all

constraints are satisfied.

Naïve search formulation: We could define the search space

to cover all permutations of the dimensions of input and output

tensor of every node. However, this leads to an extremely large

search space with many invalid and inefficient candidates.

Our search formulation: We define the search to configure

only the most layout-performance-critical nodes, which are

convolution4 and reshape operations because they are common

operations and have the most constrained implementations for

TPUs. The search queries the compiler for valid input-output

layout combinations for these nodes. Once layouts of reshape

and convolution nodes are assigned, we leverage the existing

layout propagation algorithm to propagate layouts from these

nodes to others. This search space contains only valid and

relatively efficient candidates.

Operator Fusion: When operators are fused, intermediate

tensors can be used by the consuming operator directly without

saving them to the slow main memory. Fusion also reduces

kernel launch overheads. While most ML compilers [1], [3],

[4], [6], [10], [21] support fusions of a limited set of oper-

ations, XLA can fuse more complex operations (e.g., gather,

scatter, reshape, reduce, etc.) resulting in more optimization

opportunities as well as more decisions to make. Typically,

when an operator is fused into multiple consumers, it must be

duplicated (recomputed) in each consumer because consumers

can have different iteration spaces (loop structures). This is

illustrated in Fig. 2, where add is fused into both reshape
and copy. The compiler must trade between recomputation

and reduced memory communication.

Compiler’s heuristic: The XLA fusion algorithm maintains

a priority queue of all nodes in the graph. A cost model

computes the priority of a node as the benefit of fusing that

node into its consumers. The algorithm iteratively fuses a node

with the highest priority value until all nodes have negative

priority values. The fused node and its consumers are removed

from the queue, newly formed fused nodes are inserted, and

the priority values of affected nodes are updated.

Our search formulation: We assign a boolean value to each

fusible node to control whether it is fused with its consumers.

Alternative formulation (edge): We can assign a control bit

per edge (instead of per node) such that a parent node is

fused with only a consumer whose edge is marked. However,

when a parent node u is fused with a consumer node v but

not a consumer node w, the compiler saves the intermediate

output of u in the slow memory; as a result, we do not get

the full benefit of fusion. While this formulation is more

expressive than the per-node formulation, we believe this

additional coverage is unnecessary.

Alternative formulation (node priority): Another approach

4All tensor contraction operations (e.g., multiplication and einsum) are
converted into convolutions before layout assignment in XLA.

is to assign a node a priority value instead of controlling

its fusion behavior explicitly, similar to GO [19]. We can

adapt the existing heuristic to use these priorities as its initial

node priorities, instead of using the cost model. However, the

heuristic dynamically adjusts the priorities when nodes are

fused; a configuration cannot define these values in advance

because we do not know how many adjustments will occur.

A workaround is to set the priority of the newly fused node

to the sum of its constituents’ priorities. This search space is

larger than ours, but covers the same set of behaviors.

Alternative formulation (flags): Another approach is to tune

the compiler’s fusion-related flags. We try tuning flags that (1)

limit fusions of inputs into convolutions, (2) limit fusions of

outputs into convolutions, and (3) parameterize the fusion cost

model. This search space is small, and does not grow as the

number of nodes increases. However, this approach provides

less control than the other formulations.

Tile-Size Selection: The goal is to pick an optimal tile size

for each kernel’s input and output tensors such that they fit in

scratchpad memory.

Compiler’s heuristic: XLA enumerates all possible tile

sizes and chooses the optimal one according to hand-written

analytical cost models.

Search formulation: We query the compiler to get a set of

valid tile sizes for each kernel to form the search space. The

number of tile sizes we autotune ranges from 2 to 500,000.

Lowering Flags: Apart from tile size selection, the

lowering phase is also responsible for many performance-

critical decisions. Many of these decisions are determined by

heuristics that are controlled by flags. Some examples include

instruction window size for hoisting load/store instructions,

enabling overlaps of input/output DMAs, and scratchpad limit

to allocate to an operator.

Compiler’s heuristic: The compiler developers set these flag

values to “magic" numbers that work well on most benchmarks

in the regression suite.

Search formulation: For an integer flag, we limit the search

space to four sensible values. XTAT tunes the total of eight

integer and boolean flags.

C. XTAT’s Search Schedule

We configure SelectOpt in XTAT-M to explore different

search schedules for tuning our four target optimizations. For

scalability, we choose to decouple graph-level optimizations

(layout and fusion) from kernel-level optimizations (tile size

and flags) for scalability.

1) Joint layout-fusion autotuning: Following the formu-

lation presented in Section II-B, we configure SelectOpt to

alternate between layout and fusion every S steps, where S is

set to five via hyperparameter tuning. Mutating both layout

and fusion configurations in one search step performs slightly

worse than the alternating strategy.

2) Joint tile-size-flags autotuning: The tile size selection

pass does not change the graph, merely annotating nodes with

tile sizes, so the joint tile size and flags optimization is less

complex. Further, the joint search space of tile sizes and flags
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is small enough for enumeration. Hence, we performed an

exhaustive search within each node on the cross-product of tile

size and flags search spaces until the time limit is reached. We

also explore tuning tile size and then flags sequentially. We

configure SelectOpt to tune tile size until exhaustion before

switching to flags. The result in our evaluation (Section IV-B)

reveals that tuning them in sequence is superior to tuning them

jointly because we can only explore a small fraction of the

entire joint search space before timeout. Thus, we configure

XTAT to tune tile size and flags separately.

D. Execution Time Measurement

1) Measurement on hardware:
a) Kernel execution time: Most kernels’ runtimes do

not depend on input data, so they can be measured reliably

using random inputs; this is an approximation in a few cases

such as gather and scatter kernels. We do not tune tile sizes

for kernels that communicate across multiple devices; their

optimal choices are trivial since there is no complex tradeoff

between communication and compute. We parallelize runtime

measurements across machines, and use multi-threading to

further parallelize compilation.

b) Graph execution time: We measure the runtime of

a graph by summing its kernels’ runtimes. We ignore kernels

that communicate across multiple devices, as layout and fusion

decisions rarely affect these kernels’ runtimes, enabling tuning

a multi-device model on a single device. We ignore loops

and conditionals, considering only the kernels in their bodies.

We found these approximations to be accurate enough for

ranking in autotuning. One can improve the fidelity of the

estimates using program traces to weight kernels’ runtimes

by their execution counts. Finally, we ignore interactions

between kernels as they do not execute concurrently on a

TPU, leaving only negligible effects like code prefetching

and device temperature. We use caching to avoid measuring

identical kernels repeatedly since small configuration changes

leave most kernels in a graph unchanged.

2) Learned cost model: To avoid expensive candidate eval-

uations (compiling and executing on real hardware), we train

a learned cost model to predict execution time, following

the TPU learned performance model [22]. The model uses

a GNN to encode operation features and the structure of a

kernel subgraph. Node embeddings outputted from the GNN

are summarized using a simple reduction function to generate

a kernel embedding, which is fed into a feed-forward layer to

produce a final prediction. We train one model for all graph-

level optimization tasks, one for tile-size selection, and one

for flags selection. The GNN is shared between tile-size and

flags models. For graph-level tasks, the model predicts the

absolute runtime of a kernel based on the default tile size

and flag values, selected by the compiler’s heuristics. The

entire program’s runtime is the summation of the kernels’

predictions. For kernel-level optimizations, the model predicts

relative runtimes of different configurations of a given kernel.

To ensure accuracy of the model for newer types of work-

loads and to keep up with compiler’s changes, we finetune

the model periodically; we freeze the GNN layers and retrain

only the feed-forward head. Since the model can never be

100% accurate, we execute the top k configurations on real

hardware and pick the best.

IV. EVALUATIONS

Our benchmarks comprise 150 machine learning models

from the XLA TPU regression suite representing both produc-

tion and research usage at Google. They include both inference

and training graphs, with sizes ranging from 100 to 56,000

nodes. We report execution time speedup of each benchmark

over its default execution time when compiled using the XLA

compiler’s heuristics, which have been continuously improved

by a large team of experts since 2016 for production usage.

Execution time is measured on TPU v3 [15].

A. End-to-End Autotuning

1) Tuning on real hardware: According to the results from

Section IV-B, we set our end-to-end autotuning schedule as

follows: first, jointly tune layout and fusion via SA, followed

by exhaustive search for tile-size autotuning, and ending with

exhaustive search for flags tuning. The joint layout-fusion

optimization was tuned for two hours on 10 TPU machines

(each with a host and an accelerator) or at most 10,000

candidate evaluations on each machine for each model. The

exhaustive search for tile-size and flags autotuning is sharded

to run on 10 machines with one hour timeout for each task.

The results in this section show what XTAT can achieve given

a moderate amount of resources and time; techniques to reduce

tuning time and resources will be evaluated later.

Figure 4 reports the real execution time speedup using

representative program inputs and complete control flow. The

figure breaks down the speedup contributions from autotuning

different passes. We display 43 models that achieve perfor-

mance improvement of 5% or more. Overall, XTAT offers 5%

speedup on average over the production compiler across 150

models, where tile size and fusion autotuning contributes the

most to the total speedup, followed by layout, and flags auto-

tuning. We see a huge speedup on AVSpeech inference (2.4×)

and Translate Transformer inference (1.5×). Nine models also

exhibit more than 15% improvement. Note that the XLA

compiler has been heavily optimized for most of these models;

nevertheless, the autotuner still provides substantial speedup:

14% on MLPerf DLRM training (recommendation model),

13% on MLPerf Mask RCNN training, 11% on MLPerf SSD

training, and 7% on a few ResNet training models.

2) Tuning with learned cost model: Next, we evaluate

the learned cost model in terms of its efficacy on reducing

tuning time. We generated training data for the learned cost

model from compiling and running the 150 ML models using

random layout, fusion, tile size, and flag configurations. Eight

benchmarks were held out for testing.

On the hold-out benchmarks, we compared: (1) using only

real hardware for evaluations and (2) using the learned cost

model to select top k configurations to evaluate on real hard-

ware. Both settings employed the same autotuning schedule
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Fig. 4: End-to-end model speedups from autotuning 150 ML models. The figure shows only models that achieve 5% or more

improvement. The first bar (AVSpeech inference) has 2.36× speedup (2.34× from fusion and 2% from tile size). There is no

performance regression on the rest of the benchmarks; in the worst case, the model’s execution time remains the same.

(joint layout fusion, followed by tile size, and ended with

flags tuning). For (1), we used the same autotuning setup as

in Section IV-A. For (2), we also used 10 TPU machines

to perform real evaluations on hardware but used 10 CPU

machines at the beginning to select top layout and fusion

configurations in order to cut down time using TPU machines,

which are in high demand. In particular, we first ran the joint

fusion-layout autotuning on 10 CPU machines for two hours

or at most 10,000 steps using the learned cost model, selected

the top (k = 10) candidates from each machine, and ran them

on 10 TPU machines. Then, we used the learned cost model

to pick the best (k = 5) tile sizes and flags from each shard to

execute on a TPU. Here, we ran both cost model evaluations

and real hardware evaluations on TPU machines as time spent

on cost model evaluations are negligible.

Figure 5a reports the execution time speedup using represen-

tative program inputs and complete control flow, and Fig. 5b

reports the tuning time. Overall, using the learned cost model

achieves almost the same speedup as using real hardware

alone, while drastically reducing tuning time. On average, it

reduces the tuning time of tile sizes and flags by 6× and

8× respectively. Notice that although it does not help reduce

the total layout-fusion tuning time significantly, it reduces the

tuning time on TPU machines by 240×.

This improved tuning time makes it possible to run the

autotuner at scale. We have deployed the tile size and flags

autotuning to automatically optimize the top workloads in

Google’s fleet daily. The learned cost model enabled XTAT
to tune 20× more kernels per day. In the past 10 days, XTAT
has sped up the most heavily-executed kernels by 3.5% and

1.6% on average from tile size and flags tuning respectively.

3) Performance analysis: The speedup from autotuning

generally comes from higher FLOPs utilization. Good tile sizes

balance computation and memory bandwidth utilization. XTAT
doubles the tile sizes of many copy operations in the Translate

Transformer benchmark, increasing the memory bandwidth

utilization of these operations from 45% to 70%, resulting

in an overall speedup of 1.3×.

(a) Execution time speedup on benchmarks in the hold-out set when
using the learned cost model vs. using hardware evaluations alone.
Higher is better. Using the learned cost model achieves the same
speedup of 2.4× on AvSpeech as using the real hardware.

(b) Tuning time in minutes (maximum across 10 machines). Lower is
better. Light blue is tuning time on CPU machines, which are cheaper
and more abundant resources.

Fig. 5: End-to-end autotuning: the learned model drastically

reduces tuning time while achieving almost the same speedup

as using real hardware alone.

Fusion autotuning generates better fused operators, enabling

more efficient tile sizes for corresponding operations. E.g.,

in AVSpeech inference, fusion tuning moves one reshape

operation out of a convolution fusion operation, enabling it

to use a tile size that is 12.5× larger than before. As a result,

this convolution fusion is sped up by 12.5× with over 2×
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FLOPs utilization and over 3× memory bandwidth utilization,

resulting in an overall speedup of 2.3× for that benchmark.

Good layout assignment generally reduces the overall data-

formatting overheads. However, autotuning Translate Trans-

former reveals an intricate relationship between different op-

timizations. Layout tuning adds a copy operation, removing

a bitcast from a long-running fused operation. As a result,

the FLOPs and memory bandwidth utilization of the fusion

operation increases by over 2× and over 1.5× respectively,

yielding an overall speedup of 1.16× for that benchmark.

4) Result discussion: Our performance improvements may

at first seem modest. However, our benchmarks are repre-

sentative of large, real world deployments, so even small

improvements translate to significant resource savings. Further,

the baseline compiler we compare against is actively being

tuned against the same benchmarks (and sometimes in the

light of our own tuning results!), making it a constant battle

to stay ahead. When XTAT was applied to top workloads from

the TPU fleet (beyond the benchmark suite), we saw higher

speedups (approximately 15% on average).

Prior works [1]–[7], [10] evaluate only on inference models,

and show impressive performance improvements. However,

their baselines are library kernels (from CuDNN, MKL,

etc) that are generally optimized for training workloads. In

contrast, our baseline is the XLA TPU compiler, which is

optimized for both inference and training workloads.

B. Search Formulations

To evaluate the search formulations presented in Sec-

tion III-B, we used SA as the search strategy, measured execu-

tion time using real hardware, and selected 10 benchmarks that

showed significant speedup from autotuning for a particular

optimization problem. We ran 10 replicas of SA with random

seeds in parallel and reported the best configuration found

among all the replicas. On each replica, we ran the search for

10,000 steps with a two-hour time limit. We experimented with

two modes: starting the search from a default configuration

(from the compiler’s heuristic) and starting from random con-

figurations (different replicas starting from different random

configurations). This subsection reports speedup with respect

to execution time measured as described in Section III-D1

(ignoring control flow and using randomly generated data).

1) How effective is our layout assignment formulation?:
As shown in Fig. 6, when starting the search from a default

configuration, our proposed search formulation drastically

outperforms the naïve formulation, as we hypothesized. When

starting from random configurations, the search using the naïve

formulation is unable to find any valid layout configuration

for any of the benchmarks. In contrast, the search using the

proposed formulation is able to find valid configurations for

all benchmarks with an average speedup of 8.6%, which is

almost the same as the average speedup of 9% when starting

from the default configuration.

2) How effective is our operator fusion search formula-
tion?: Figure 7 shows the results when starting the search from

a default configuration. The per-node control bit formulation

Fig. 6: Layout autotuning: execution time speedup using

different search spaces (starting from a default configuration).

Our proposed formulation outperforms the naïve formulation.

Fig. 7: Fusion autotuning: execution time speedup with differ-

ent search spaces (starting from a default configuration). The

per-node search space offers the most speedup.

is slightly (2 percentage points) better than the per-edge al-

ternative, as hypothesized. The difference is more pronounced

when starting from random configurations (not shown in the

figure), where the per-node formulation’s average speedup is 8

percentage points higher than that of the per-edge formulation.

Another search formulation uses node priority, and is sig-

nificantly worse than the control bit formulations. Even when

starting from default, the best candidates found in this search

space are worse than the default; it is impossible to faithfully

reconstruct the default configuration in this formulation as

priority values change dynamically during the fusion pass.

The last alternative search formulation is tuning flags.

Because the entire search space has only 52 candidates, we

performed an exhaustive search here. As we hypothesized, this

formulation is worse than the control bit formulations due to its

limited expressivity, offering tiny speedup on all benchmarks.

3) How much benefit does joint layout and fusion autotun-
ing offer?: To investigate the potential of joint autotuning of

multiple passes, we compared two strategies: tuning layout

and then fusion sequentially (each for two hours), and tuning

them jointly (for four hours). Figure 8 shows the results

for benchmarks where joint autotuning improves over tuning

layout and then fusion. For the remaining six benchmarks,

sequential and joint tuning offer the same speedup. According
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Fig. 8: Autotuning layout then fusion vs. autotuning them

jointly (with/without configuration reuse). The first three in

each cluster start from a default configuration; the last two start

from random configurations. ‘No reuse’ does not employ the

configuration reuse mechanism (the global ConfStore). Joint

tuning with the reuse mechanism offers the most speedup.

to Fig. 8, joint tuning is better than sequential tuning. This

is because a better layout configuration may disable an even

better fusion configuration.

In addition to evaluating the achievable speedups, we also

compared tuning time between sequential tuning and joint

tuning. We measured the time taken to reach within 0.1

percentage point of the highest speedup. On average, joint

tuning took 2.7× less time than sequential tuning to reach the

highest speedup across 10 benchmarks. This is likely because,

in some benchmarks, the sequential search schedule wasted

time optimizing layouts (in the first half of the search) when

there was not much room for improvement.

This experiment also suggests that our simple search tech-

nique is still effective in an extremely large search space,

thanks to our strategy of leveraging compiler heuristics.

4) How important is the configuration reuse mechanism
for joint autotuning?: The configuration reuse mechanism

(Section II-B3) enables the autotuner to reuse parts of the best

fusion configurations found so far when a layout configuration

changes. Without this mechanism, the autotuner must reset to

a default or random fusion configuration when a new graph

is generated by a new layout configuration. According to

Fig. 8, when the search starts from a default configuration,

there is no difference between using and not using the reuse

mechanism. However, if the search starts from a random

configuration and GetInitConfig in Fig. 3 returns a random

configuration, we observe significant benefit from employing

the reuse mechanism: up to 15% execution time improvement.

In terms of time to reach the highest speedup (within 0.1

percentage point) when starting from a default configuration,

reuse or no reuse mechanism took similar time on all but two

benchmarks. On MLPerf DLRM and GraphNets n4k, the reuse

mechanism reached the highest speedup 4.5× and 1.8× faster

than no reuse mechanism did. Hence, the reuse mechanism is

useful for reducing tuning time for some models and essential

if one does not have good default configurations.

5) How much benefit does joint tile size and flags autotun-
ing offer?: Similar to joint layout-fusion, we compared tuning

tile size and then flags, and tuning them jointly. Since tile size

and flags search space is small, we enumerated all candidates

and evaluated them in a random order up to a time limit (10

minutes). For the sequential schedule, we tuned tile size and

then flags on every kernel. For the joint strategy, the time limit

per kernel is 20 minutes. Tuning tile size then flags offers 6.6%

average speedup, while tuning them jointly offers only 1.9%

average speedup. This is because while the individual tile size

and flags search spaces are small, their joint search space is

too large; as a result, traversing the search space in a random

order fails to discover good candidates by the time limit.

C. Search Strategies

To show that XTAT-M allows various search strategies

without changing the search formulation, we ran the search

techniques from Section II-C (excluding exhaustive search) on

fusion autotuning. This also evaluates the search strategies at

finding good candidates in a large search space. We measured

execution time on real hardware, using 1,000 or 10,000

candidate evaluations, depending on the benchmark’s time for

one evaluation. We ran each search strategy on 10 replicas

starting from the default configuration. We report speedup

using randomly generated data and ignoring control flow.

Figure 9 shows the average speedup over the default con-

figuration. Fig. 10 in the Appendix shows the optimization

trajectories for one example benchmark. We find rather simple

evolution-based techniques (SA and EVO) reliably find better

solutions than advanced model-based optimization techniques

(MBO and RL). We hypothesize that the high-dimensional

search spaces (2960 for AutoEncoder; up to 239568 for Efficient-

Net) make it challenging to fit an accurate model without prior

knowledge. Furthermore, the evolution-based techniques take

less time to propose new candidates, reducing compute costs

and overall tuning time. While SA and EVO are comparable

for most benchmarks, SA is worse than EVO and RL on

GraphNet models. With more samples, however, SA achieves

Fig. 9: Fusion autotuning: average execution time speedup

using different search strategies (starting from a default con-

figuration) when allowing up to 1,000 or 10,000 samples

(depending on benchmarks). Error bars show 95% confidence

intervals over ten replicas.
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the highest speedup. We conclude that when resources are

limited (one or a few machines available for autotuning), EVO

finds good configurations faster than other algorithms.

V. RELATED WORK

A. Autotuning in ML Compilers

Autotuning has been effective at optimizing code in various

domains [23]–[28]. We apply this technique to a multi-pass

ML compiler. Recent search-based ML compilers [1]–[8] ap-

ply autotuning at the kernel or subgraph level. Template-based

approaches [1]–[7] are similar to XLA’s lowering algorithm;

based on a kernel’s subgraph, a loop structure template is

used to generate code. Ansor [3] proposed a template-based

approach that allows more flexible loop fusions compared to

prior work. However, their tiling structure is still fixed, and

their fusion capability is more limited than XLA’s. Halide [5],

[29]–[31] covers a larger space of possible loop implementa-

tions compared to template-based approaches, but performed

worse than FlexTensor [4] and Ansor [3]. Mind Mappings [32]

and AKG [33] focus on operator-level optimizations and code

generation for custom hardware accelerators. Unlike XTAT,

these prior works do not tune layout decisions.

The value learning approach [9] first applied search to loop

optimizations for an entire graph at once. However, its search

must be applied in a single compilation stage, making it

inapplicable to multi-pass production ML compilers, and it

does not tune tensor layouts. This approach has been applied to

inference graphs with up to 400 nodes, while our approach has

been evaluated on both inference and training graphs with up

to 500,000 nodes. DeepCuts [34] applies a greedy exploration

guided by an analytical cost model to tune graph-level fusion

decisions along with some GPU kernel parameters. However,

its fusion capability is limited, and it is not obvious how

to extend DeepCuts to support layout tuning at the graph

level. Graph substitution approaches [10], [35] optimize entire

tensor computation graphs, but work in a limited search space

reachable via graph rewrites. Without exploding the number of

rewrite rules, they cannot represent arbitrary fusions of tensor

operations or change layouts of arbitrary tensors. GO [19]

optimizes device placement, operator fusion, and operator

scheduling decisions for an entire TensorFlow graph. However,

it does not consider the effect of multiple compilation passes

on the intermediate computation graph, so we cannot adopt

their search formulation when dealing with a full compiler

stack. Rammer [36] can jointly optimize inter- and intra-

operator parallelism, but it does not address other kinds of

optimizations, such as layout and fusion, addressed in this

paper. Rammer’s approach is also inapplicable to TPUs, since

TPUs do not support concurrent execution of multiple kernels.

Many existing works use heuristics or analytical cost models to

tackle a specific graph-level optimization, including operator

fusion [21], [37], [38] and layout assignment [39].

B. Joint Autotuning Capability

In a multi-pass compiler, changing a configuration for one

optimization pass changes the search spaces for subsequent op-

timizations, as explained in Section II-A. Generic autotuning

frameworks, such as OpenTuner [28], require the entire search

space to be specified upfront, thus disallowing search spaces

that change dynamically. Our joint autotuning methodology is

a generic method to formulate the interactions between multi-

pass compiler optimizations. It is applicable to any multi-

pass compiler and is not specific to the XLA compiler or

XTAT. Therefore, it can be implemented in existing autotuning

frameworks (if they can be extended to support dynamic search

spaces), enabling them to perform joint optimizations.
The approach used in most search-based ML compilers [1]–

[9], inspired by Halide [29], supports joint optimizations by

default. However, when a search space is large, it requires a

cost model that can accurately evaluate a (partial) schedule

or configuration, which is extremely challenging to create for

an entire tensor graph. Therefore, most of these compilers

optimize only one small subgraph at a time. While the value

learning approach [9] can optimize an entire inference graph,

it requires carefully-crafted feature engineering, which is not

easily applied to new hardware. Furthermore, one cannot easily

apply a Halide-like approach to multi-pass production compil-

ers without completely reimplementing them. Our goal is to

provide autotuning capability to such multi-pass compilers.

C. Learned Cost Model
Similar to prior works [2], [5], [7], [9], [22], [40]–[42],

we use a learned cost model to accelerate autotuning. We

additionally propose a pretraining-finetuning method to reduce

training time while keeping the model up-to-date.

VI. CONCLUSION

We proposed a search methodology that enables autotun-

ing various graph-level and subgraph-level optimizations at

different compilation stages for production ML compilers.

Our search formulation allows solving optimization problems

jointly or one-at-a-time, as well as using a spectrum of search

strategies to solve them. Based on this, we developed an

autotuner to tune the key optimization passes in the XLA TPU

compiler. The execution time speedups on 150 ML models

from Google’s workloads found by the autotuner averaged 5%,

with many cases over 15%, and one improving by a factor of

2.4. We substantially reduced tuning time via a learned cost

model.
XTAT has been used in different ways to optimize produc-

tion models. Compiler developers have used XTAT to detect

opportunities to improve the baseline heuristics multiple times.

For instance, fusion autotuning led to a fix in the heuristics,

yielding 18% latency reduction on a model served in produc-

tion. Such improvements are invisible in our experiments as

they have already been incorporated into the compiler. Besides

being used by compiler developers, XTAT has been deployed

to automatically tune tile sizes and flags for the most heavily-

used production models in Google’s fleet everyday.
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APPENDIX

A. Additional Evaluation Results on Search Strategies

Fig. 10: Fusion autotuning: optimization trajectories for one

example benchmark. Shaded areas show 95% confidence in-

tervals over ten replicas.

In the experiment that compares different search strategies

in Section IV-C, we collect the speedup trajectories of various

search strategies over time on one example benchmark, shown

in Fig. 10. We notice that RL has very high variance on

most benchmarks compared to the rest, as also evidenced in

Fig. 10. This means in the setting where we can run 10 search

replicas in parallel and take the best, RL often achieves the

most speedup compared to the others at the same number of

samples, especially earlier in the search. Future work may

consider incorporating prior knowledge, e.g. pretraining the

models on a diverse set of graphs, to improve the performance

and the consistency of model-based optimizations.

B. Semantic Rules for XTAT-M
In this section, we describe (a) the implementation of

GenerateCandidates for simulated annealing, and (b) briefly

present the semantics of operations in XTAT-M and derive

two search steps in a joint layout-fusion tuning for the graph

in Fig. 2.
a) Implementation of GenerateCandidates for simulated

annealing: As described in Section II-C, simulated anneal-

ing uses a mutation operator, e.g., single-node, to mutate

a given configuration and accept a new one based on an-

nealing temperature. Fig. 11 presents an implementation of

GenerateCandidates for simulated annealing. This implemen-

tation utilizes a routine, Mutate, which implements the muta-

tion operator, generating a new configuration from the current

configuration.
b) Semantics of operations in XTAT-M: Fig. 12 presents

the semantics of InferConfig, UpdateStore, Mutate (based on

Fig. 11), and ApplyOpt. Specifically, to keep the discussion

concise, we focus on a single-node mutation-based search

strategy applied to tuning layout assignment and operator
fusion optimizations.

• InferConfig: This routine updates a configuration config
for an optimization optid to be compatible with the graph

1: function GENERATECANDIDATES(optid ,C)
2: c←C[0] // C has one candidate.
3: c′ ← c // Init configs for all optimizations.
4: // Mutate only the config for optimization optid .
5: c′.configs[optid]←Mutate(c.configs[optid])
6: return {c′}
7: end function

Fig. 11: Implementation of GenerateCandidates for simulated

annealing.

g, an input to the optimization pass. InferConfig identifies

the nodes in g and config that have the same fingerprint

fp(n) and carries forward the configurations in config for

such nodes. For the other nodes in g, it pulls the best

configurations found so far from the global ConfStore
if present; otherwise, it generates optimization-specific

defaults.

• UpdateStore: When a search candidate configuration is

evaluated and it performs superior to prior observed

evaluations, then the candidate configuration is captured

by updating the global ConfStore.

• Mutate: Mutate constructs a new configuration from the

current configuration. We present a simplified rule for a

single-node mutation, so Mutate returns a configuration

change for a single node in the graph.

• ApplyOpt: As described in Section II-B, ApplyOpt trans-

forms an input graph by applying the optimization.

A derivation of the joint layout-fusion tuning performed on

the graph in Fig. 2 is presented in Fig. 13. For conciseness, we

do not describe all the tensors involved in the graph. Specif-

ically, we focus on the mutation of the layout configurations

for tensors, t5 and t6, in the search step for layout, and focus

on the add node in the search step for fusion. In each search

step, the Mutate operation for layout begins with the graph

g, applies a layout mutation, and infers the config for fusion.

Additionally, the first step performs the Mutate operation for

fusion. Both steps apply the inferred fusion configuration and

execute the output graph. Based on the evaluation, each search

step updates the global store, i.e., ConfStore. In the derivation,

we note that applying a search candidate for layout in step

1 results in the addition of a copy node, while no copy
is introduced when a different search candidate for layout is

explored in step 2.

15



Fig. 12: Semantics of functions InferConfig, UpdateStore, Mutate (for a single node), and ApplyOpt in XTAT-M.

infer-config

f rom_con f ig := {tuple( f p(n),con f ig[ f p(n)])}, ∀(n).(n ∈ g.Nodes∧ f p(n) ∈ con f ig)
f rom_store := {tuple( f p(n),Con f Store[optid ][ f p(n)])}, ∀(n).(n ∈ g.Nodes∧ f p(n) 
∈ con f ig∧ f p(n) ∈Con f Store[optid ])
f rom_init := {tuple( f p(n),GetInitCon f ig(optid ,g)[n])}, ∀(n).(n ∈ g.Nodes∧ f p(n) 
∈ con f ig∧ f p(n) 
∈Con f Store[optid ])

E � con f ig′ := In f erCon f ig(con f ig,g,Con f Store[optid ]) ⇓ E{con f ig′ 
→ { f rom_con f ig∪ f rom_store∪ f rom_init}}

update-store

new_con f ig := {tuple( f p(n),con f igs[optid ][ f p(n)])}, ∀(n).( f p(n) ∈ con f igs[optid ])
old_con f ig := {tuple( f p(n),Con f Store[optid ][ f p(n)])}, ∀(n).( f p(n) 
∈ con f igs[optid ]∧ f p(n) ∈Con f Store[optid ])

E �U pdateStore(Con f Store,con f igs) ⇓ E{Con f Store[optid ] 
→ {old_con f ig∪new_con f ig},∀(optid ∈Con f Store)}

Mutate layout

{n1} ∈ Nodes n1 := {op, t1} optid := layoutID
con f ig[n1] := layoutt1 layout ′t1 ∈ rand(LayoutGen(t1)) ∧ (layoutt1 
= layout ′t1 )

E � con f ig′ := Mutate(con f ig) ⇓ E{con f ig′ 
→ {(n1, layout ′t1 )}}

apply-layout1

g;{n1,n2} ∈ Nodes;{(n1,n2)} ∈ Edges∧ (n2.tin == n1.tout)
con f ig[n1] := l1 con f ig[n2] := l2 E � l1 == l2 ⇓ FALSE

E � g := ApplyOpt(layoutID,g,con f ig) ⇓ E{g 
→ {g∪{n1.con f ig.layouttout = l1,n2.con f ig.layouttin = l2}∪{Insert(copy,n1,n2)}}

apply-layout2

g;{n1,n2} ∈ Nodes;{(n1,n2)} ∈ Edges∧ (n2.tin == n1.tout)
con f ig[n1] := l1 con f ig[n2] := l2 E � l1 == l2 ⇓ TRUE

E � g := ApplyOpt(layoutID,g,con f ig) ⇓ E{g 
→ {g∪{n1.con f ig.layouttout = l1},n2.con f ig.layouttin = l2}}}

Mutate fusion
{n1} ∈ Nodes n1 := {op, t1} optid := f usionID con f ig[n1] := 0

E � con f ig := Mutate(con f ig) ⇓ E{con f ig 
→ {(n1,1)}}

apply-fusion
g;{n1,n2} ∈ Nodes;{(n1,n2)} ∈ Edges con f ig[n1] := 1

E � g := ApplyOpt( f usionID,g,con f ig)) ⇓ E{g 
→ {g\{n1,n2}∪{n′2 := n1 ◦n2}}

Fig. 13: Two search steps in a joint layout-fusion tuning for the graphs in Fig. 2: left for step 1 and right for step 2. The

neighborhood size for the node’s fingerprint calculation used by ConfStore is set to 0 (ignoring neighborhood) in this example.

{n1,n2,n3} ∈ Nodes {(n1,n3),(n1,n4),(n2,n4)} ∈ Edges n1 := {add, t1} n2 := {max, t2}
n3 := {reshape, t3, t4} n4 := {conv, t5, t6, t7} g := c.graphs(layoutID)

LayoutGen(t1) := LayoutGen(t3) := LayoutGen(t5) := {{0,2,1},{2,1,0},{1,0,2}} LayoutGen(t2) := LayoutGen(t6) := {{{0,2,1},{2,0,1}}
Step 1: Tune layout & fusion

E � con f ig := Mutate(c.con f igs(layoutID)) ⇓ E{con f ig 
→ {(n4, layoutt5 
→ {0,1,2}),(n4, layoutt6 
→ {0,2,1})}}
E � g′ := ApplyOpt(layoutID,g,con f ig) ⇓ E{g′ 
→ {g∪{n4.con f ig.layoutt5 = {0,1,2},n4.con f ig.layoutt6 = {0,2,1}}∪{Insert(copy,n1,n4)}}

E � con f ig′ := In f erCon f ig(c.con f igs( f usionID),g′,Con f Store( f usionID)) ⇓ E{con f ig′ 
→ {(n1,0),(n2,0),(n3,0),(n4,0),(copy,0)}}
E � con f ig′ := Mutate(con f ig′) ⇓ E{con f ig′ 
→ {(n1,1)}

E � g′′ := ApplyOpt( f usionID,g′,con f ig′) ⇓ E{g′′ 
→ {g′ \ {n1,n3,copy}∪{n1 ◦n3,n1 ◦ copy}}}
ExecuteGraph(g′′)

E �U pdateStore(Con f Store{layoutID : con f ig, f usionID : con f ig′})a

⇓ E{Con f Store 
→ {layoutID : {(n4, layoutt5 
→ {0,1,2}),(n4, layoutt6 
→ {0,2,1})}, f usionID : {(n1,1),(n2,0),(n3,0),(n4,0),(copy,0)}}}
Step 2: Tune layout (fusion config is inferred)

E � con f ig := Mutate(c.con f igs(layoutID)) ⇓ E{con f ig 
→ {(n4, layoutt5 
→ {1,0,2}),(n4, layoutt6 
→ {0,2,1})}}
E � g′ := ApplyOpt(layoutID,g,con f ig) ⇓ E{g′ 
→ {g∪{n4.con f ig.layoutt5 = {1,0,2},n4.con f ig.layoutt6 = {0,2,1}}}

E � con f ig′ := In f erCon f ig(c.con f igs( f usionID),g′,Con f Store( f usionID)) ⇓ E{c.con f igs( f usionID) 
→ {(n1,1),(n2,0),(n3,0),(n4,0)}}
E � g′′′ := ApplyOpt( f usionID,g′,con f ig′) ⇓ E{g′′′ 
→ {g′ \ {n1,n3,n4}∪{n1 ◦n3,n1 ◦n4}}}

ExecuteGraph(g′′′)
E �U pdateStore(Con f Store,{layoutID : con f ig, f usionID : con f ig′})b

⇓ E{Con f Store 
→ {layoutID : {(n4, layoutt5 
→ {1,0,2}),(n4, layoutt6 
→ {0,2,1})}, f usionID : {(n1,1),(n2,0),(n3,0),(n4,0)}}}
(g,2 steps f usion+ layout tune)� Optimal(g′′,g′′′)

acontinues in the next line
bcontinues in the next line
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