
Compiling

a Gesture Recognition Application for

an Ultra Low-Power Architecture

Phitchaya Mangpo Phothilimthana

Michael Schuldt
Rastislav Bodik

2

Classification Applications

• Intensive computation
• Large data storage for

gesture models

computation

sensor data

computation

gesture

• Not enough space for
data and program

• Not enough energy
• Too slow

3

60 W

5 W

37 mW
0.5 mW!

GreenArrays: Ultra Low Power Processor

144 cores

505

605

506

405

504

data
stack

return
stack

288-byte RAM & ROM

• No cache, no shared memory

• Stack-based 18-bit architecture

• 32 instructions

Programming challenges
• Manually partition a program across 144 cores
• Explicitly manage communication between cores
• Program in assembly-like stack-based language

How to program and compile for
highly-constrained multicore processors with

very small distributed memory?

5

Key idea: partition a program smartly to fit the code
in tiny cores and achieve fast execution time by
balancing communication and code replication.

In the context of partitioning both:
1. data & computation
2. control flow statements

Existing Solution

6

Input: imperative sequential program

Output: per-core assembly programs

Compilation strategy: similar to SPMD
• Output per-core programs have the same structure (control flow).

• Data and computation are distributed across cores.

Extra input:
partial constraints on data and computation partitioning

[Phothilimthana et al. PLDI’14]

int x[12];

for(i from 1 to 12)

x[i] += x[i-1];

Spatial programming model

7

int[4]@{1,2,3} x[12];

for(i from 1 to 12)

x[i] += x[i-1];

Spatial programming model

Partition Type
pins data and operators
to specific partitions
(logical cores)

8

Similar to [Chandra et al. PPoPP’08]

1
x[0:4]

2
x[4:8]

3
x[8:12]

int[4]@{1,2,3} x[12];

for(i from 1 to 12)

x[i] +=@loc(x[i]) x[i-1];

Spatial programming model

Partition Type
pins data and operators
to specific partitions
(logical cores)

9

Similar to [Chandra et al. PPoPP’08]

1

+

x[0:4]
2

+

x[4:8]
3

+

x[8:12]

10

Incomplete Annotations

int[4] x[12];

for(i from 1 to 12)

x[i] += x[i-1];

11

Incomplete Annotations

Partition Type
Inference

Program + some
partition annotations

Complete
partition annotations

Hard constraint:

Code fits in each logical core
(partition).

Objective:

Minimize number of messages sent
between partitions.

int[4]@?? x[12];

for(i from 1 to 12)

x[i] +=@?? x[i-1];

12

Problems

Problem I Generated code is too large.

Cause Control flow statements partitioning
strategy exploits code replication but
not enough communication.

Problem II Slow execution time (no parallelism)

Cause Data & computations partitioning
strategy does not exploit
code replication.

13

Problems

Problem I Generated code is too large.

Cause Control flow statements partitioning
strategy exploits code replication but
not enough communication.

Problem II Slow execution time (no parallelism)

Cause Data & computations partitioning
strategy does not exploit
code replication.

14

Control Flow Partitioning

// source

int@2 f(int@2 i)

{ ... }

int@1 x;

for(i from 0 to 100)

x += f(i);

SPMD strategy
(original)

Actor strategy

1 2
var x

x +=

func f

f(i)

1 2
var x

actor_call(f,i)
x +=

func f

f(i)

More code
Less communication

Less code
More communication

Replicates relevant control flow
constructs onto every partition.

Sends a request to execute code to
avoid control flow duplication.

// annotate with
actor f;

“Requestor partition” “Actor partition”

15

Compiling with Mixed Strategy

Given a program with a complete partitioning assignment,
how to generate code for each partition?

• Which control flow constructs need to be replicated in each
partition?

• Which partition is a “requestor” of a function?

• Which partitions are “actors” of a function?

16

Compiling with Mixed Strategy
Control Dependence Graph (CDG)fix1_t@21 f[8]; fix1_t@11 s[8];

fix1 t@23 b1[32]; fix1 t@13 b2[32];

actor get_b;

fix1 t@23 get_b(int@23 index) {

if (index <@23 32)

return b1[index] ;

else

return b2[index -@13 32];

}

actor step;

void step(int@22 g) {

for (i from 0 to 8)

f[i] = s[i] *@22 get_b((g <<@22 3) +@22 i);

}

void swap(int@21 n) {

for (i from 0 to 8) s[i] = f[i] << @21 n;

}

void main() {

while(1) {

int@32 g = ...; int@32 shift = ...;

step(g);

swap(shift);

}

}

main

while

step
(actor)

swap

for

get_b
(actor)

for

if

f[i] = s[i] * get_b (g << 3) + i

f[i] = s[i] << n

shfit = …

g = …

b1[index] b2[index – 32]

Compiling with Mixed Strategy
fix1_t@21 f[8]; fix1_t@11 s[8];

fix1 t@23 b1[32]; fix1 t@13 b2[32];

actor get_b;

fix1 t@23 get_b(int@23 index) {

if (index <@23 32)

return b1[index] ;

else

return b2[index -@13 32];

}

actor step;

void step(int@22 g) {

for (i from 0 to 8)

f[i] = s[i] *@22 get_b((g <<@22 3) +@22 i);

}

void swap(int@21 n) {

for (i from 0 to 8) s[i] = f[i] << @21 n;

}

void main () {

while(1) {

int@32 g = ...; int@32 shift = ...;

step(g);

swap(shift);

}

}

main

while

step
(actor)

swap

for

get_b
(actor)

for

23 13

if

22 21 11 32

Control Dependence Graph (CDG)

b1[]
index

b2[] (g<<3)
+ i

f[]=

f[]<<

s[] g
shift

s[]=

Compiling with Mixed Strategy

main

while

step
(actor)

swap

for

get_b
(actor)

for

23 13

if

22 21 11 32

Control Dependence Graph (CDG)

b1[]
index

b2[] (g<<3)
+ i

f[]=

f[]<<

s[] g
shift

s[]=

Partition 23 is dominated by
actor function get_b.

(Partition p is dominated by function f,
if all paths from main to p pass f.)

Compiling with Mixed Strategy

main

while

step
(actor)

swap

for

get_b
(actor)

for

23 13

if

22 21 11 32

Control Dependence Graph (CDG)

b1[]
index

b2[] (g<<3)
+ i

f[]=

f[]<<

s[] g
shift

s[]=

Therefore,
• Partition 23 is an actor of

get_b.
• Control flow of 23 starts at

get_b.

Partition 23 is dominated by
actor function get_b.

(Partition p is dominated by function f,
if all paths from main to p pass f.)

Compiling with Mixed Strategy
Relevant control flow slice of partition 21

Partition 21 is not dominated
by actor function step.

Therefore,
• Partition 21 is not an actor of

step.
• Control flow of 21 starts at

main.

main

while

step
(actor)

swap

for

get_b
(actor)

for

23 13

if

22 21 11 32

b1[]
index

b2[] (g<<3)
+ i

f[]=

f[]<<

s[] g
shift

s[]=

SPMD Strategy

23

main

while

step

for

get_b

if

b1[]
index

13

main

while

step

for

get_b

if

b2[]

22

main

while

step

for

(g<<3)
+ i

21

main

while

step swap

for for

f[]=

f[]<<

11

main

while

step swap

for for

s[]

s[]=

32

main

while

g
shift

SPMD + Actor Strategy

23

get_b

if

b1[]
index

13

get_b

if

b2[]

22

step

for

(g<<3)
+ i

21

main

while

step swap

for for

f[]=

f[]<<

11

main

while

step swap

for for

s[]

s[]=

32

main

while

g
shift

actor call

actor partitions
for get_b

actor partitions
for step

24

Problems

Problem I Generated code is too large.

Cause Control flow statements partitioning
strategy exploits code replication but
not enough communication.

Problem II Slow execution time (no parallelism)

Cause Data & computations partitioning
strategy does not exploit
code replication.

25

Original: No Task Parallelism

fix1_t@1 classify(fix1_t@1 acc[3], fix1_t@2 model[N]) {...}

prob1 = classify(acc, model1);

prob2 = classify(acc, model2);

classify()

1 2

3 4

acc, model1

acc, model2

prob1

prob2

26

Work Around: Manual Replication

classify1()

1 2

3 4

acc, model1
prob1

fix1_t@1 classify1(fix1_t@1 acc[3], fix1_t@2 model[N]) {...}

fix1_t@5 classify2(fix1_t@5 acc[3], fix1_t@6 model[N]) {...}

prob1 = classify1(acc, model1);

prob2 = classify2(acc, model2);

classify2()

5 6

7 8

acc, model2
prob2

27

Solution: Automatic Replication

// Define module

module Classifier(model_init) {

fix1_t@1 model[N] = model_init ;

fix1_t@2 classify(fit1_t@2 acc[3]) {

... }

}

// Create module instances

C1 = new Classifier(model1);

C2 = new Classifier(model2);

// Call two different functions

C1.classify(acc);

C2.classify(acc);

// Expanded from module instance 1

fix1_t@1 C1_model[N] = model1 ;

fix1_t@2 C1_classify(fit1_t@2 acc[3]) {

... }

// Expanded from module instance 2.

fix1_t@3 C2_model[N] = model2;

fix1_t@4 C2_classify(fit1_t@4 acc[3]) {

... }

C1_classify(acc);

C2_classify(acc);

Desugared to

28

Balance the use of communication and
code replication to partition

• program control flow statements

• data and computation

Solution Summary

29

Hand Gesture Recognition

I2C driver

Filter

acc

Classifier
for flip-roll

Classifier
for circle probability

probability

30

Hand Gesture Recognition

I2C driver

Filter

Quantizer HMM Classifier

Model data
Classifier
for circle

acc quantized
group

Classifier
for flip-roll

proba-
bility

probability

31

Implementation

1. Use mixed partitioning strategy to make the application fit on GA144.
orange = actor cores

2. Use parallel module to classify circle and flip-roll gestures in parallel.

I2C

filter

circle
classifier

flip-roll
classifier

Program layout
onto 2D-grid processors

32

Result

Can we use Chlorophyll with our extensions to generate code
for the gesture recognition application for GA144?

Code occupies 82 out of 144 cores.

Prediction accuracy = 80-91% (similar to Wigee [Schlomer et al. 08])

Partitioning
strategy

Number of
cores

Overflowed
cores

Size of largest
core (words)

SPMD 90 12 87

SPMD + Actor 82 0 64

Note: each core can contain up to 64 words.

33

GA144 vs. MSP430

*per one round of accelerometer reading

Processor Execution
time (ms)

Energy consumption (uJ)

Accelerometer Computation Total

GA144 2.6 1.7 0.6 2.2

MSP430 61.3 0.8 41.2 41.9

23x faster 19x more energy-efficient

How much energy consumption can we reduce by being able
to compile for GA144?

34

Demo

Partition a program smartly to fit the code in
tiny cores and achieve fast execution time by

balancing communication and code replication.

35

Summary

36

0.5 mW!

