Swiz7le Inventor

Phitchaya Mangpo Phothilimthana UC Berkeley (now at Google Brain)
Archibald Samuel Elliott University of Washington
An Wang University of Washington
Abhinav Jangda University of Massachusetts Amherst
Bastian Hagedorn University of Munster
Henrik Barthels AICES, RWTH Aachen University
Samuel J. Kaufman University of Washington
Vinod Grover NVIDIA
Emina Torlak University of Washington
Rastislav Bodik University of Washington

Swizzle

trivial movement of data or
non-trivial mapping of computations
to hardware resources and loop iterations

non

for dramatic performance improvement

Load Array of Struct in GPU

global memory

0 | 2 3 4 5 6 7

8 9 10 11l 12 13 14 15
6 7 8 19 0 2 n B
regi Ste rs 25 26 27 28 29 30 31
L alalolelele! § column shuffle

45x speedup

[Catanzaro et al. PPoPP ’[4]

Alternativels

where |,
creates & linear index from a row and column index, snd

(i.3)

Theorem 1. The C2R ranspose implements iransposition
Jor row-major arrays, and the R2C transpose implements

Proof. Defining versions of |or,, i, a0 j-v, where m and
. have been swapped:

In fact, di(f) is periodic, which mexns there are guararieed
10 be conflicts in the permutation. However, the periodi
Eaw

q (i) =

The R2C and C2R transposes are inverses of each other
These two permmtations are ilustraied in Figare |
are ot the first 10 view iransposition in
s, for ensenple, s the doscription.of Coluamsort n
Leighton [4], where the C2R permutation is calied “trans
pose”, and the RIC perrautation is called “untranspose”

o

Figure 1: C2R and RIC transpositions, m = 3,n = 8

Rows o Cokeas 3 ¢ »

in Grmoeas s Anvm

We begin by discussing out-of place versions of these
Znn*(pmuun‘ and showing how they relate % traditional
‘matrix transposition,

cancel the res

ing additive term

Ibm mod

= lbac mod be =0

We then distribuie the modlus over both remaining
We can repiace the expression ((i + [) mod m) e
by (i + u uuude)y defining kv, d

e 1= (kg +

n). Then

(i +1) mod m) mod n = rand (i + 1) m

Dmede e

due 10 m = acand n = be. Noti
[0.6), and hac mod Er is ke, for k € [u B). we see that
i+ mode+hmmodn < be = n, so the external
modulus is unnecessary. Then the last line follows from
Lo 3. noing s th e (1 + 1) oo s independent
u(hand;unnwﬂnwpluz the set [} {hm mad n}
with ;. fhe!

Now, [lxl:ly ‘un.h € [0,m), the range of d;(j) over the
enire dovain [0,1) i

w1
U @t =
50

Decause ((i + [) mod ¢) enumerstes all values in [0,) on
the domsin [€ [0,c). Therefore (5) is 2 bijection on
[o.n). o

Note that for ¢ = ged{r.m) = 1. || = 0, yiekling

() = d = dif5)

i+ jm

“This isnplies that if m and n are coprime, d,(7) is naturally
Hijective.
Theorem 4. inplace transpasition can be decompased into
independent row-wise and column-wise operatians.

Proof. Since () is bijective on the domain j € [0,), then.
aher pre-rowsting columas of the aray. each element can
e semt 10 & unigue desination column during independent
row-wise permutations. Once each element is in the comrect
destination column, it necessarily has a unigue row 1o which
it should be sent to complete the transposition. Since the
indices in both steps are unique, the row and column wise
‘permutations are decorpasable. o

We have aiready described the column-wise rorations,
amd given the sel of indepenent row-wise permutations.
Now we will give the column-wise permutalions recessary
0 finish the transposition. Since the ensures

step require q
inverse b~! = mmi(b, a

—1

c—1+1
C

b—l

mod a-+

However, the gather-based indices for the row permute
7). Compute the modular multiplicative
Then

c—1

are inverses of each other, we can aiso define the transpos
tions in teris of scatier operations:

ARG 5), dGi. §)] = Ali. §) a3

AT), efi.)] = Ali.) 14
with value 16 high

For exarapie, consider the elemmer
lighied in Figure 1, where mn = 3,
clement is Socuied at §

= || = 2ope
‘Now we i the consecion etween he R2C and C2R
iranspases and the linearized transposition problern,

tions, we need only consider permuting elements
witin the colurans,
For the C2R transposition, Equation 7 shows that the
source row of element i in columa j is
m @5
However, since we rotated the original array to create d (),
the correct source row is & different fanction. Define:

) (, +in— li) modm 6

5li) = (j+in)

Thearenn 5. (i) compates the corecs sparce v indices
10 complese the ransporsition.

Proof. From Eguation 8, the source colum of element i in
caluran 5 for & C2R transposition is

0= U2 o

Also note that B0 = b When we rotated the
oo of the el vy s el o decmpekion
tated groups of b columas topether. Each of those b
colurns formed a subarray of brn elements. Now, exari
groups of a rows of the array, each of which form subarrays

of an elements. These subarrays have 2 one-to-one corre-
spondence
o ce s, we will thow tht Vi & [v, <o,
) € [kh, (k41

Farst, note in both i and j, s0
we can bound it over & domsin of interest by & values at
the exirensa of the domin. Decorn
f= |4 and note thal due
Accondingly, oy(ka) <

- Ev}:l’:a;;ngun e,
afks) =
= |®-n
Sienila ressoning shows that the upper bound c, (£ +

= (k+ 1)6 — 1. Accordingly, over the domain
et be true

<je<
it also true that over this domsin,

I i s, s ol i o et
group & were rotated by k elemen

& e ol & 0m40-0m Gocoipidnc bitwesa
subarays comprised of the origiral columns of the array that
e mamed by ks, s e sowsof sy hs e

from those.
Hieving evabiahe s coromondence, e need 1 ad-

ion. Ace

ach element is direcied 1o the correct colurn via row-wise

P ‘opersations. o

elirm(D).jem()) = L’r"

And 30 we can substitute 10 show

acn)

ool e

Therefore, A
ARE = AL,

= Al Symmetric reasoning shows

o
Theorem 2. Swapping dimensions m and r before perform-
i the iranspose. the C2R transpase implements transposi-

tian, arrays, and the R2C transpose irmpl
ments transposition for row-major arrays.

Summarizing, the C2R algorithin is performed in three
steps:

I g, n) > 1: Rotate columes by gathering from

calurn using r, (1) from Eiguation 23 into 4 terpo-
rary vector, then copy the result over the origina! colurn.

* Row shaflle: scatter each row into a Lemporary vector us-
ing indices d(j) from Exuation 24, then copy the resull
over the original row.

* Column shalfle: gather from each coluean inlo 3 terpo-
rary vector using s)(i) from Equation 26, then copy the
fesal over b riginal colatmn.

Combining these three steps leads 10 & slrnghl!urwnn.\
statement of the C2R transponition algorithm,
plco pemartaions ¢ mmporarybifhr of st mas{em, .\
This s presented as gorithe 1
Ngorithm 1 In-place C2R sransposision of armay A
if ger(m,) > 1 then
for j in [0, 1) do

for i in [0,) do
tmpli] = Alr, (1)] {Gather per eq. 23
end for

for i in [0,) do
Afi.] = tmgli]
end for
end for

r
for £ in [0.1m) do

24}

6}

or
for i in [0, m) do
p 1= tmgfi]

Figure 2 shows the staie of & matrix a i s iransposed us-
ing & C2R transposition. Each of the three steps comresponds
10 ane of the three outermost loops in algorithen 1.

The R2C runaposition igonim the mvere fhe C2R
algorithra, It can be derived by reversing the onder of the
permutstion sieps in the C2R algorithm and interchanging
gather and scatter permutations.

Theorem 6. The decomposed in-place transpose algorithm
has aptimal work compleity (). when géven aiiliary
space of Ofmax(m, n).

section, as the R2C transposition is menely the inverse of the
C2R transposition,

As shown Equation 10, the destiration colum of element
Jimrow i is:

+ jm) modn 22)

di(j)

where we have fixed i for preseniation parpases. We would
like to perforr row-wise permutations to send each element
10 the correct colismn required by the transposition. This can
only be done if each element goes 10 & unique columa, olh-
exwise the row-wise opersiion is 1ot & well-formed perm-

tation, aa the srnsposition is not decorapossble.
Howeves, in general. d, (7) s not Bijective on j € [0, 7).
meaning each element does not go to 2 unigue column, and
-forrmed permutation.

50 he row-wise operation is not 2 wel

12136/ 20/ 24 25

ns ENRIETER)
&3040 205
G lufslslalel

o3 wafz] n

—n- El
2

. unnu n

25,3 0,7 0] 31

Figare 2: C2R sranspose of 4 x § msirix

Proaf. In the worst case, the algorithm reads and writes each
element 6 times, performing row and column permats
of-place. This gives the work complexity of O(mn),
ohich i known, 0 be o, The sl roires 8
teeparary vector of size max(m, n) in arder to carry o
these out-al-place permutations.

4. Optimizations

‘The C2R transpose shows in algeeithrm | and its R2C inverse
i both scatier and g -

pes
tations oa both the rows and columns of the armay. Practical
considerations of these algorithms may motivate the se of
alternative implementations. For exarpl, gather bused for-
mmalations are sometiraes more efficient, or required due 1o
funciional restrictions. Additionally, we have found it useful
o restrict the column aperations: rather than allowing unre-
siicted column shuflles, we perforea the column operations
using & compasition of two more resiricied priritives. Re
sricting the column operssions allows us 1o opimize
ory access patterms, and enables the in-register implementa-
tion using SIMD instractions.

We also oserve that we are free 1o choose either row-
rsjor o columamajor linearization during CIR and R2C
transpases, which is an important optimézstion.

Thearem 7. The lincarization assumed while pecforming
C2R ar R2C transposes does mot affect the permutation they
induce

Proof. Let B represent & row-msjor array that is created by
2C2R transy sing column-eajor indexing on 1 row-
mor array A

Bll] = Armlem(8{icm (1), jera (1)), elicm (1), je

Noting

mod ¢)-a

remove these conficts,

ks and 7 columns. Define « =

periodic with period b

n
[+ 42)m

hn—r:k?):r.(xl n
jm + k) o n
()

) 0 n
with period b, a

1, maltple elements in each.
coluran, since in thal case
w-wise permmtation Uhal sends
olumn does ot exist if ¢ > L

1 prove thet this means e

s case.

n are a0t coprirme, we would

bwise permutations e easure

e coturan. We st show that
destination column foe each

b f}(7) that is bijective on the

th period &, we adjust the array
rernove the conflicts. Cansider

(34)

‘index equation

k) o | Considr rossing
s, or equivalently, column
ed froen the source array wsing

-l

Substituting. afer rotsing all columas of the array, the re
sulting destination column for each elerment of the new array

a0)= ((‘- HJ)mm m—)m) modn (24)

Our task s to prove that Egastion 24 is = ijection, which
will show b the rotations have removed conficts, decor-
‘posing the transposition

“To do this, the following lemmss are useful,

and substitating the CIR source equations from Equa-

tians 7 and &, as well a from Eguations 16 and 17 inio
the mku.g Fanciion shove,
G (0) o ()l (0. 5
This proves
Bl = A% @0)

St reasosing halds for using row-msjor indexing on 3
[————— o

Theoreen 7 gives us the freedora 1o index armays in row
‘major ar column-matjor order, regandless of their native sior-
2ge ardes. Although the intermediate state during the trans-
positian differs depending on the choice of linearization
ased to perforra C2R or R2C ranspases, the fact that the
final result does not depend on this choice simplifies imple
atasion. This is an important performance o
since we can design the implemenzation so that row and col-
‘aran operations always run in fixed directions, regandiess of
‘whether the arr2y was given 1o us in row of columa fsjor
onler. This enables us to optimize mecory access palierns
0 it cache lines.

41 Restricted Column Operutions
Instead of implementing arbitzary columa shuffles, we have
foun it usefal o restrict colarn operations 1 cokrn ot
tion and row perrratstion.

I coluran rotation, each colummn of the array is rocsied
by some rotation amoun. such that the gather bused index.
equation of the columa operation is of the form [, (i) =
(i + (7)) mod m.

In row permation, all rows of the arrsy are permuted.
such that the gather bused index equativn of the colurn
operation is of the form {(3), with 1o dependence on the
coluran index j. Si vs are all permuted idestically.
the effect is @ panicular kind of column-wise permutation,
‘where every cotumn s permuted identcally

42 Columas to Rows Optimizations

Ao specified e, f c > 1. we fen e by teing

o) specifid in tion

row shuflle indices () were \ptnh:d a5 3 seter
Equation 24, To transform it ino 3 giher

permutstion, we must find its inverse] (

Lemma 2 Vry € N |0 <2< b0 <y<h
mz mod n = my mod n implies x = y.

Proaf. Proal by contradiction. Assume 3,3 | 0 < z <

5,0y < bz # and alsa that mx mod 1 = my mod .

Substitating, acz mod be = acy mod be. By ¢ mxﬂahhl)
nces, this implies @z mod iy = ay m

b=y mod bimast be true. Since we assarmed 0 < 7 < band
0 5 < b the modulus is extrancous, and s0.7 = y. But his
i 8 comtradicton, since we assumed carler Gt x £ 3. O

b {hm ot), and les T =

Lemma 3. Let § = ()
Uz {he}. Then $

Proof. By Lerma 2, we know 18] = b. We also know
7] = by inspection. Next, we show that § € 7 To do this,
we show that vk € [0, b, 3 € [0,5) | hm mod n = ke. By
the definition of modulus, hac mod be = hae — be | 48| =
(ha — 5[4 e where € 2. To bound k. we ot
e since i 8 el wilh espect 10 6 0 < < b
Accondingly, § C T, and since we already showed |S] =
[, it st be i ht § = 1 o

Theoren 3. () s a bijection 05 j € [0,m) for any fised
i fo,m)

Proof. Otserving that [$] = [s constant for j € [lb, (1 +
1)b), we first smalyze the sets

Se = |J {4

= U {6+ mod m+ jm) mod n}

) mad m + (Ib + hjm) mod n}

U 4166+ 1) mod e+ hm mod m) mod m}

U {ti=0

ot hom mad n

+ 1) mod e+ he}

where we fint replace d,(j) by its definition, followed by
semaving the offes b from th index, which sllows one 1o

i compute the modular multiplicsive inverse a~' =

mmi(a, b). Then

&= (o | 22

To decompase the column shuflle given by
tion 26 iato @ columa rotation and & row perTUtALion, we
note that for gaiher-based permutation functions f(i) and
. gahering with indices (f o g)1) is equivalent to first
gathering with indices (i), followed by a second gather
Witk Endice (7). Seatenbased percmatons e e copo

) mod b+ ({{i,j) mod ¢} - b

colura
Jm can b devormposed i s coluana rotsion followed by
& Tow perrutation, where the column rotssion is:

pi(0) = (i +j) mad m @32)

And the row permuzation is:

(o)

This decompositin of a column shaffle into these two
mare restricted primitives is correct because (p) © g
(i)

43 Rows to Columns Optimizations
The row shuffle siep in the R2C transpose s simple whea
formutated us = gather, since it can just use o () directly
without the peed for inversion

However, the gather-hused indices for the row permute
siep require g (i). Compute the modular mltiplicative
imverse b = mmi(b,a). Then

4 \;\:U ’f“Ja ‘) nod a=+{((e=1)i) mod c)a

) 34

Insicad af perforning u scater rotation o imert the rota-

tiom in the C2R algorithm, we can do & gather rosion with
imerid indices:

P (i~ j) mod m (5

And the fina! rotation indices are also inverted from the C2R
pre-ruation indices:

Fo=(| im0

a8 3 Reducti

We will use the muodular multiplicative imverse function
i,), which i defined for coprie rady:
(= - mmiz,) mod y

Deline a belper function

_[i+ita-1n) i-(jmede)+csm

+m i (jmedd)+e>m

4
[Catanzaro et al. PPoPP ’1 4]

Evaluaiing the index equtions, such as Equation 31, in-

by using & strength redoction sechaigue that involves com-
peing s fixed-point recipeocal, and then convening integer
ion into maliplication by the reciprocal followed by &

Load Array of Struct in GPU

global memory

New algorithm!

3 4 5 6 7

8 9 10 I 12 13 14 15
28 29 30 31

25 | 26 27

I
|
\

registers

01t 12 |3 Itiiwld " column shufﬂe ‘ row shufﬂe

0 | 2 3 4 5 6 7

I 8 9 10 15 12 13 14

MR N N =2 2] o [
29 30 31 28

25 26 27 24

¥ column shuffle

Swizzle Inventor
synthesizes in
seconds!
Search space = ~10%3

GPU Architecture Basic

Computation = Memory Latency
a thread % ‘ registers fastest
a warp
(32 threads)
a thread block shared memory fast
concurrent %% %%‘_é i
threads L
a grid of thread blocks global memory very slow

independent % % | ,
thread blocks |

GPU Architecture Basic

Computation

Memory Latency

fastest

a thread %
%)H

a thread block

a warp
(32 threads)

concurrent % —e |
threads L

a grid of thread blocks

independent % % | ,
thread blocks |

? | registers

intra-warp
shuffle

'\ registers

LLLL

shared memory fast

very slow

Register Cache: Stencil

global memory

load 5 3

shared memory registers
1 1

[Ben-Sasson et al. ICS’ 1 6]

Register Cache: Stencil

global memory

load 5 3

shared memory registers
1 1

[Ben-Sasson et al. ICS’ 1 6]

Register Cache: Stencil

global memory

load 5 3

shared memory | registers |
1

[Ben-Sasson et al. ICS’ 1 6]

Register Cache: Stencil

global memory

load 5 3

shared memory

[Ben-Sasson et al. ICS’ 1 6]

: regls:ters |

In each iteration

__shfl_sync(mask, rc[idx],
recv_from)

rc

idx:
(tid »>= k)? @0 : 1

recv_from:
(tid + k) % warpSize

11

Automatic Optimization

These optimizations require:
* reasoning about program globally
* solving multiple constraints together

* rewriting multiple program fragments simultaneously

Cannot be done by a typical rewrite rule in
a compiler.

Swi-7le Inventor

Helps programmers implement swizzle
programs by:

* letting them write program sketches that
omit swizzles

* automatically synthesizing swizzles to
complete the programs

Stencil: Program Sketch

SIMT program

l l | ! output[tid] = out;
output

Stencil: Program Sketch

global memory

input MT_

registers

rc

output

0

4

SIMT program

rc = load(input, warpOffset,
/* slice */ 1,
/* iterations */ 2);

output[tid] = out;

16

Stencil: Program Sketch

global memory

input MTZH

registers
re BOIE W
CRECRECRRC
SHICIECHS

SIMT program

rc = load(input, warpOffset,
/* slice */ 1,
/* iterations */ 2);

int out

:e;
for(int k =

0; k < 3; k++) {

out += tmp;

}

output[tid] = out;

17

Stencil: Program Sketch

g

int tmp = magic_get(rc); -->

// Choose which input data to send
int idx = ?sw part(2, tid, k);

// Choose which thread to read from
int recv_from =
?sw_xform(tid, warpSize, k)3

recv_from = ??

// Perfoxm intra-warp shuffle
int tmp = shfl _sync(FULL_MASK, rc[idx]recv_from);

Use ?sw_xform (transformation Use ?sw_part (partition

swizzle) when recv_from is

. . swizzle) otherwise
permutation or broadcast of tid

Transformation Swizzle Hole

?sw_xform hole defines the search space that contains
grouping permutations of fanning followed by rotation.

rotation co-prime fanning
rot(i) = (i+2) mod 8 fan(i) = (3*i) mod 8
xiffof1|2|3(4(5]|6]|7 xiffof1|2|3(4|5|6]7
sSs———— P
ylrot())]=x[i]|6|7|0]|1]2[3[4]5 y[fan(i)]=x[i] |0 |3 |61 (4|7 |2]|5
grouping
group(4.fan)(i) = |i/4] x4+ ((3* (i mod 4)) mod 4)

= =

0131214765

ifoftl2l3]4]5]6]7
]

y[group(4,[€an) (i)

Transformation Swizzle: Example

fanning followed by grouped rotation

z[(group(3,rot) o fan)(i)] = x(i
fan(i) = (3*i+ [i/3]) mod 9
group(3,rot)(i) = |i/3| *3+ (((i mod 3) + 1) mod 3)

x|i]

ylfan(i)] = x[i]

z|group(3, rot)(i)]
= y[i]

21

Partition Swizzle Hole

?sw_part(n, v, ..) :=
if ?sw _cond(v, ..) then ©

elif ?sw_cond(v, ..) then 1

else n - 1

Condition Swizzle Hole

(V |) Gcmp (I Gbin (V |))

el 2] > <] <

?sw_cond(v, ..)

oy @)

.

-] ©
I I

+ | -

I := integer

Correctness Condition

Spec: sequential program Sketch: CUDA sketch
void spec(__global __ void sketch(
const float *x, const float *x,
float *y, int n) { float *y, int n) {
fo;ginzui : g% 1<ny d++) | rc = load(x, warpOffset, 1, 2);
for(int k = 0; k < 3; k++) .
out += x[i+k]; int out = O;
y[]_] = out; For(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
} out += tmp;
}
Jh Vx .spec(x,y,n) } y[tid] = out;
A sketch(h)(x,y',n)
Ay =Yy

Correctness Condition

Spec: sequential program Sketch: CUDA sketch
void spec(__global __ void sketch(
const float *x, const float *x,
float *y, int n) { float *y, int n) {
fo;ginzui : g% 1<ny d++) | rc = load(x, warpOffset, 1, 2);
for(int k = 0; k < 3; k++) .
out += x[i+k]; int out = O;
y[]_] = out; For(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
} out += tmp;
}
Fh Vx .spec(x,y,n) } y[tid] = out;
A sketch(h)(x,y',n)
Ay =Yy

Correctness Condition

Spec: sequential program Sketch: CUDA sketch
void spec(__global __ void sketch(
const float *x, const float *x,
float *y, int n) {

float *y, int n) {

fo;ﬁingui : g% 1<ny d++) | rc = load(x, warpOffset, 1, 2);
for(int k = 0; k < 3; k++) _
out += x[i+k]; int out = O;
y[l] = out; for'(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
} out += tmp;
}
dh .spec(X,y,n) \ y[tid] = out;
A sketch(h) (X, Y9

Ay =Y array of symbolic

variables

26

Symbolic Representation

Spec: / \ Sketch:

fo;gingui _ g; 1<ny d++) | rc = load(x, warpOffset, 1, 2);
for(int k = 0; k < 3; k++)
out += x[i+k]; int out = 0;
y[i] = out; for(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
1 out += tmp;
}

Xo+X1+X5 | X9+Xo+X3 | Xo+X3+X, | X3+Xq+Xs

y[tid] = out;

}

Xo+Xo+X5 | Xo+HX0+X5 | X+X5+X, | X+ X0+X5

Symbolic Representation

Spec: / \ Sketch:

fo;ﬁingui _ g; 1<ny d++) | rc = load(x, warpOffset, 1, 2);
for(int k = 0; k < 3; k++)
out += x[i+k]; int out = ©;
y[i] = out; for(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
1 out += tmp;

}

Xo+X1+X5 | X9+Xo+X3 | Xo+X3+X, | X3+Xq+Xs

y[tid] = out;

}

Xo+Xo+X5 | Xo+HX0+X5 | X+X5+X, | X+ X0+X5

28

Symbolic Representation

X | X | Xe | X0 | X3 | Xq | Xs
Spec: / \ Sketch:
for(int 1 = 9; i < n; i++) { _ :
int out = 0; rc = load(x, warpOffset, 1, 2);
for(int k = 9; k < 3; k++) i
out += x[i+k]; int out = O;
y[i] = out; for(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
1 out += tmp;
}
{Xos X1 Xo} | {X0s X5 X3} | {Xa5 X35 X} | {X3,X45Xs}
op: + op: + op: + op: + y[tid] = out;
{X?JX?)X?} {X?)X?:X?} {X?)X?:X?} {X?:X?)X?}
op: + op: + op: + op: +

29

Symbolic Representation

X | Xo | X1 | X2 | X3 | Xa | Xs
Spec: / \ Sketch:
'F i t 1 = @; 1 < . 2
o;ﬁtnoui - 9: Lens d+4) o rc = load(x, warpOffset, 1, 2);
- 3
for(int k = 0; k < 3; k++) .
out += x[i+k]; int out = O;
y[i] = out; for(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
1 out += tmp;
}
{XG,X]__,Xz} {XlJX.Z-'X3} {XZJX.3JX4} {X3)X.4)X5}
op: + op: + op: + op: + y[tid] — Out;
— {Xp,Xp,X,} {%0, %0, %} | {Xe, X, %0} | {X2, %, %5}
— multiset A op: + op: + op: +

op: +

Spec:

Accumulator

for(int i = @; 1 < n; i++) {

0O =

create_accumulator(0, +);

for(int k = 9; k < 3; k++)
accumulate(o, [x[i+k]], true);

Sketch:

rc = load(x, warpOffset, 1, 2);

0O =

int tmp = magic_get(rc);
accumulate(o, [tmp], true);

create_accumulator(e, +);
for(int k = 0; k < 3; k++) {

y[i] = eval(o);
i
{XG.’Xl.,XZ} {x1, X2, X3} | {X25X3,Xa} | {X3,X4,Xs5}
op: + op: + op: +
op: +
— multiset

}
y[tid] = eval(o);
{Xo5 %25} | {XeuXe, X0} | {Xe, X, X%5}
{X?’X?’X?} op: + op: + op: +
op. +

Accumulator

Sumstencil: & - +

{X, Y, X} = multiset {X, X, y}

Xt+ty+x=x+x+Yy

Convolution: -+, (O > X

{{W: X}, {u: y}} = multiset{{u: Y}; {X, W}}
wxx)+uxy) =wxy)+ (xxXw)

@ and (©) must be
associative and communitive.

Search Problem

Spec: sequential program Sketch: CUDA sketch
void spec(__global __ void sketch(
const float *x, const float *x,
float *y, int n) { float *y, int n) {
for(int 1 = @; 1 < n; 1++) { rc = load(x, warpOffset, 1, 2);

o = create_accumulator(@,identiy,+);
for(int k = 9; k < 3; k++)

accumulate(o, [x[i+k]], true); o = create_accumulator(®,identiy,+);
y[i] = eval(o); for(int k = 0; k < 3; k++) {
} int tmp = magic_get(rc);
} accumulate(o, [tmp], true);
}
Jh.spec(X,y,n) y[tid] = eval(o);
~ }
A sketch(h)(X,y',n)
Ay =Yy

Expressiveness:
Can Swizzle Inventor synthesize GPU kernels
with swizzling optimizations in the literature?

Stencil computations

Inventiveness:
Can Swizzle Inventor invent new optimizations!?

Stencil: 2D Convolution

Use registers to cache input image.

Speedup

3 5 7 9
Filter Size

Baseline
—&— Swizzle Inventor
landola et al.
—e&— ArrayFire
—v— NPP

Finite Field Multiplication

acc ans@ = create_accumulator(@, identity, ~, &);

for(int k = 0; k < 32; k++) {
int a0

__shfl_sync(mask, rA[?sw_part(2,tid,k)],
?sw_xform(tid,32,k));

Speedup

Ben-Sasson et al.shmem
Ben-Sasson et al.jgq
Swizzle Inventorshmem
Swizzle Inventor,eq

} 8 accumulates
o
o F 6 accumulates

int al

int be

int bl

shfl_sync(mask, rA[?sw_part(2,tid,k)],
?sw_xform(tid,32,k));

shfl_sync(mask, rB[?sw_part(2,tid,k)],
?sw_xform(tid,32,k));

shfl_sync(mask, rB[?sw_part(2,tid,k)],
?sw_xform(tid,32,k));

accumulate(anso, [a@,bO], ?sw_cond(tid,k));
accumulate(anso, [a@,bl], ?sw_cond(tid,k));
accumulate(anso, [al,b@], ?sw_cond(tid,k));
accumulate(anso, [al,bl], ?sw_cond(tid,k));

0.75

210 212 214 216 218 220 222
Number of Multiplications

37

Matrix Transposition

global memory

New algorithm!

0 | 2 k} 4 5 6 7

25 26 27 25 26 27

registers

1 1 1 1
tO 1 tl 12 1 t3 1 t4 1 t5 1t 1 t7

0 | 2 3 4 5

I 8 9 10 15 12

25 | 26 27

Swizzle Inventor
synthesizes in
seconds!
Search space = ~10%3

Swi-7le Inventor

Helps programmers implement swizzle programs by:

* letting them write program sketches that omit
swizzles

* automatically synthesizing swizzles to complete the
programs

O github.com/mangpo/swizzle-inventor

