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Search at Subgraph Level is Suboptimal

P 4

A common strategy partitions a graph into subgraphs 
according to the neural net layers, ignoring 
cross-layer optimization opportunities.

Empirical result: a regression of up to 2.6x and 32% 
on average across 150 ML models by limiting fusions 
in XLA to be within layers.
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Search Approaches: Long Compile Time
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Production Compilers: Multi-Pass
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● Models evaluated by research compilers: up to 1,000 node

● Industrial-scale models: up to 500,000 nodes!

● That’s why production ML compilers still decompose the 
compilation into multiple passes.

● None of the existing approaches support autotuning different 
optimizations in a multi-pass compiler.

○ Challenge: search space of a pass is highly dependent on 
decisions made in prior passes.



Our Goal
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Bring the benefits of search-based exploration to multi-pass 
compilers:

● for both graph and subgraph levels

● with flexibility via configurable search to tune subset of 
optimizations of interest

Ref: Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.



Production ML Compilation Stack at Google
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...



XTAT: XLA TPU Autotuner

P 10

Code
Optimizer

ML 
program

Learned 
Policy

decision

observation

to guide 
the search

Learned Cost 
ModelHardware

candidate cost

Evaluator

Graph-level 
Optimizations:

Algebraic Simplification,
Layout Assignment, 

Cross-Replica Sharding, 
Operator Fusion, 

Rematerialization, etc.

Kernel-level 
Optimizations: 

Tiling, Vectorization, Flags, 
etc.

blue = optimizations that we tune
yellow = learned models



Learned 
Policy

decision

observation

to guide 
the search

Learned Cost 
ModelHardware

candidate cost

Evaluator

XTAT: XLA TPU Autotuner
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Pass Configuration 
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configuration on a tensor graph 
for an optimization pass 

is 
a collection of per-node configurations that control

how the pass transforms each node in the graph



Layout Assignment
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Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

reshape’s 
node config



Layout Assignment
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Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}reshape’s 

node config
Layout 

Assignment



Layout Search Space
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Option #2: Proposed
● Tune layout options for important ops 

(convolution and reshape).
● For each important op, get valid input-output layouts from XLA.
● Leverage XLA layout propagation algorithm.

Option #1: Naive
● Layout options for each input/output are permutation of its 

dimensions.
● Many invalid configs because there are constraints between 

tensors.



Operator Fusion
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add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

Example:

add

reshape

conv

maxcopy

add

Operator 
Fusion



Tile Size & Code Gen Flags Search Space
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add

reshape conv

max
copy

add

tile sizes:
{ output: [2,8], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,4,4] }
...

tile sizes:
{ output: [4,16,8] }
{ output: [4,8,8] }
{ output: [4,4,4] }
...tile sizes:

{ output: [128] }
{ output: [64] }
{ output: [32] }
...

Tune config for each fused node (kernel) independently.
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Joint Autotuning: Challenges
gA   --- A(configA) --->   gB   --- B(configB) --->   gout

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

1

0

add

reshape

conv

max

add

Layout Fusion

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

add

reshape

conv

maxcopy

add

Layout Fusion

configA determines 
the input graph gB 
to pass B and its 
search space

When we change 
configA to configA’, 
gB is changed, and 
configB is no longer 
valid.

How to not start the 
search for B from 
scratch when 
configA is changed?
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Methodology for Joint Autotuning

Returns:
A, B, C, A, B, C, … (joint tuning)
A, A, …, B, B, …, C, C, … (sequential)
or some combinations of them
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Methodology for Joint Autotuning

Candidate c:
c.graphs = [gA, gB, gout]
c.configs = [configA, configB] 

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB] 

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’] 
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Construct Well-Formed Candidate

Key ideas:
● Update subsequent graphs

● Update configB’ to have 
configurations for all nodes in 
gB’ from:

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB] 

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’] 

○ configB
○ global configuration store

(maintaining the best config 
per node)

○ default value
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End-to-End Search Schedule

● Separate tuning graph-level and kernel-level optimizations for 
scalability

● Tuning layout + fusion jointly is better than sequentially
● Tuning tile size + flag jointly is worse than sequentially

Tune layout-fusion jointly (simulated annealing)
→ then tune tile size (exhaustive)
→ then tune code gen flags (exhaustive)
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End-to-End Runtime Speedup
We measured end-to-end model speedups from autotuning 150 ML models. 
The figure shows models that achieve 5% or more improvement.

2.4x
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Code
Optimizer

Learned Cost 
ModelHardware

candidate cost

Evaluator

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.



Overview of Cost Model

25

f(     )
KERNEL

≅ 5.2s
RUNTIME

2. Regression Per Kernel 1. Decompose Into Kernels
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Model Architecture

GNN

embed 
opcode

opcode
ids

opcode 
embeddings

kernel feats

node feats

repeat

adjacency 
matrix

node 
embeddings

||

||

Reduction model: 
simple reduction, 

LSTM, or 
Transformer

feed
forward

kernel 
embeddings

runtime 
prediction
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Losses

Mean Squared Error
for absolute runtime prediction.
Targets are log-transformed.

1 if z > 0
0 otherwise

hinge function or
logistic function

Pairwise Rank Loss
for relative runtime prediction.
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Accuracy Evaluation and Baseline

● Accuracy evaluation tasks

○ Tile size selection (relative runtimes)

○ Fusion (absolute runtimes)

● Baseline: XLA’s hand-written, analytical performance model

○ XLA argmins all tile sizes using this performance model

○ Fusion does not use this model. It uses other heuristics.
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Accuracy: Tile Size Selection

Compare true runtimes between best 
predicted and actual best tile size. APE:

In random split, learned model ~halves APE.
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Accuracy: Fusion

Compare Mean Absolute Percentage 
Error of kernel runtime predictions.

Random split: learned model improves 
MAPE by ~85%.
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Ablations: takeaways

● Using a rank loss for the tile-size task reduced APE by 10 pts. on 
average.

● GraphSAGE outperformed using a Graph Attention Networks or 
sequence model and was less sensitive to hyperparameter 
selection.

● Replacing the LSTM/Transformer reduction with a non-learned 
reduction works almost as well (and improves inference time).

http://snap.stanford.edu/graphsage/
https://arxiv.org/pdf/1710.10903.pdf
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Training for All Optimization Tasks

● Generate  training  data  from 150 ML models using random 
layout, fusion, tile size, and flag configurations. 

● Train:
○ one model for  all  graph-level  optimizations to predict 

absolute runtime
○ one  model  for  tile-size  to predict relative runtime
○ one  model  for  flags  to predict relative runtime 

● The  graph embedding  network  is  shared  between  tile-size and 
flags models.
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Tuning with Learned Cost Model

Execute the top k configurations from each worker according to 
the model on real hardware and pick the best. 
● k = 10 for graph-level optimizations
● k = 5 for kernel-level optimizations

Runtime Speedup (x)

be
tt

er

be
tt

er

Tuning Time (min)
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Search Strategies

● Exhaustive
● Simulated annealing (SA)
● Evolutionary (EVO)
● Model-based optimization (MBO)
● Deep reinforcement learning (RL)
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Model-Based Optimization (MBO)

● At each optimization round, a set of candidate regression models  
are  fit  to  the acquired  data.

● Good models are assembled to define an acquisition function.

● The acquisition function is then optimized by EVO to generate a 
new batch of samples.

● Candidate models: ridge regression, random forests, gradient 
boosting, and neural networks

Ref: Angermueller et al., Model-based  reinforcement  learning  for  biological sequence  design, 
ICLR 2019
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Deep Reinforcement Learning (RL)

● Designed  specifically  for  ML  compiler’s  graph optimizations

● Uses  a  graph  neural  network  to  create node embeddings and 
segmented recurrent attention layers to capture long-range 
dependencies

● Non-autoregressive

○ N node decisions are done in parallel

○ Conventional autoregressive approach is infeasible as N can be 
as large as 100k

Ref: Zhou et al., Transferable  graph  optimizers  for  ml  compilers, NeurIPS 2020



P 38

Search Strategies: Fusion Autotuning

Average speedup across 10 runs. Each run evaluated 10,000 candidates.



XTAT: XLA TPU Autotuner
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blue = optimizations that we tune
yellow = learned models
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Data-Center Scale Deployment
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Fleet-Wide TPU Autotuning at Google

Job Profiling/Ranking

Task Google Wide Profiling ProfileDB XLA

Version 
Control

XLA-AutoFDO 
frontend

XLA-FDO 
Profiles

Query
FDO
Profile

+ AutoFDO Tag

Monitoring, Abnormality Detection, Maintenance 

ML-Insights Issue Tracker / Email 
Notifying SREs

Getting Autotuning Configurations as the FDO Profiles
XLA-AutoFDO 

BackendXLA Offline Tuning
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Fleet-Wide TPU Autotuning at Google

● Have deployed  the  tile  size  and  flags autotuning to optimize top 
workloads in the TPU fleet daily

● Learned  cost  model  enabled tuning  20x more  kernels  per  day

● Save >1% of total TPU consumption

● Savings / tuning cost: >10x
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