
ML for Autotuning
Production ML Compilers

Phitchaya Mangpo Phothilimthana
mangpo@google.com

Search-Based ML Compilers

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Search-Based ML Compilers

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Search at Subgraph Level is Suboptimal

P 4

A common strategy partitions a graph into subgraphs
according to the neural net layers, ignoring
cross-layer optimization opportunities.

Empirical result: a regression of up to 2.6x and 32%
on average across 150 ML models by limiting fusions
in XLA to be within layers.

Search-Based ML Compilers

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Search Approaches: Long Compile Time

subgraph

op
ti

m
iz

at
io

n
 s

co
p

e

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

XLAgraph

compile time (for ResNet like inference)

minutes hoursseconds

Production Compilers: Multi-Pass

P 7

● Models evaluated by research compilers: up to 1,000 node

● Industrial-scale models: up to 500,000 nodes!

● That’s why production ML compilers still decompose the
compilation into multiple passes.

● None of the existing approaches support autotuning different
optimizations in a multi-pass compiler.

○ Challenge: search space of a pass is highly dependent on
decisions made in prior passes.

Our Goal

P 8

Bring the benefits of search-based exploration to multi-pass
compilers:

● for both graph and subgraph levels

● with flexibility via configurable search to tune subset of
optimizations of interest

Ref: Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.

Production ML Compilation Stack at Google

P 9

...

XTAT: XLA TPU Autotuner

P 10

Code
Optimizer

ML
program

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

blue = optimizations that we tune
yellow = learned models

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

XTAT: XLA TPU Autotuner

P 11

Code
Optimizer

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Pass Configuration

P 12

configuration on a tensor graph
for an optimization pass

is
a collection of per-node configurations that control

how the pass transforms each node in the graph

Layout Assignment

P 13

Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

reshape’s
node config

Layout Assignment

P 14

Example:

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {1,0}

{0,1,2} {0,2,1}{1,0,2}

{1,0,2} {0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}reshape’s

node config
Layout

Assignment

Layout Search Space

P 15

Option #2: Proposed
● Tune layout options for important ops

(convolution and reshape).
● For each important op, get valid input-output layouts from XLA.
● Leverage XLA layout propagation algorithm.

Option #1: Naive
● Layout options for each input/output are permutation of its

dimensions.
● Many invalid configs because there are constraints between

tensors.

Operator Fusion

P 16

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

Example:

add

reshape

conv

maxcopy

add

Operator
Fusion

Tile Size & Code Gen Flags Search Space

P 17

add

reshape conv

max
copy

add

tile sizes:
{ output: [2,8], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,16,8] }
{ output: [2,4], kernel: [4,4,4] }
...

tile sizes:
{ output: [4,16,8] }
{ output: [4,8,8] }
{ output: [4,4,4] }
...tile sizes:

{ output: [128] }
{ output: [64] }
{ output: [32] }
...

Tune config for each fused node (kernel) independently.

P 18

Joint Autotuning: Challenges
gA --- A(configA) ---> gB --- B(configB) ---> gout

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

1

0

add

reshape

conv

max

add

Layout Fusion

add
[2,4,16]

reshape
[128]

conv
[2,8]

max
[4,16,8]

{0} {0,1}
{1,0}

{0,1,2}
{1,0,2}

{0,2,1}
{2,0,1}

{2,1,0}
{1,0,2}
{0,2,1}

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

add

reshape

conv

maxcopy

add

Layout Fusion

configA determines
the input graph gB
to pass B and its
search space

When we change
configA to configA’,
gB is changed, and
configB is no longer
valid.

How to not start the
search for B from
scratch when
configA is changed?

P 19

Methodology for Joint Autotuning

Returns:
A, B, C, A, B, C, … (joint tuning)
A, A, …, B, B, …, C, C, … (sequential)
or some combinations of them

P 20

Methodology for Joint Autotuning

Candidate c:
c.graphs = [gA, gB, gout]
c.configs = [configA, configB]

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB]

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’]

P 21

Construct Well-Formed Candidate

Key ideas:
● Update subsequent graphs

● Update configB’ to have
configurations for all nodes in
gB’ from:

Change configA:
c.graphs = [gA, gB, gout]
c.configs = [configA’, configB]

Fix c to be well-formed:
c.graphs = [gA, gB’, gout’]
c.configs = [configA’, configB’]

○ configB
○ global configuration store

(maintaining the best config
per node)

○ default value

P 22

End-to-End Search Schedule

● Separate tuning graph-level and kernel-level optimizations for
scalability

● Tuning layout + fusion jointly is better than sequentially
● Tuning tile size + flag jointly is worse than sequentially

Tune layout-fusion jointly (simulated annealing)
→ then tune tile size (exhaustive)
→ then tune code gen flags (exhaustive)

P 23

End-to-End Runtime Speedup
We measured end-to-end model speedups from autotuning 150 ML models.
The figure shows models that achieve 5% or more improvement.

2.4x

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Learned
Policy

decision

observation

to guide
the search

Learned Cost Model

P 24

Code
Optimizer

Learned Cost
ModelHardware

candidate cost

Evaluator

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.

Overview of Cost Model

25

f()
KERNEL

≅ 5.2s
RUNTIME

2. Regression Per Kernel 1. Decompose Into Kernels

P 26

Model Architecture

GNN

embed
opcode

opcode
ids

opcode
embeddings

kernel feats

node feats

repeat

adjacency
matrix

node
embeddings

||

||

Reduction model:
simple reduction,

LSTM, or
Transformer

feed
forward

kernel
embeddings

runtime
prediction

P 27

Losses

Mean Squared Error
for absolute runtime prediction.
Targets are log-transformed.

1 if z > 0
0 otherwise

hinge function or
logistic function

Pairwise Rank Loss
for relative runtime prediction.

P 28

Accuracy Evaluation and Baseline

● Accuracy evaluation tasks

○ Tile size selection (relative runtimes)

○ Fusion (absolute runtimes)

● Baseline: XLA’s hand-written, analytical performance model

○ XLA argmins all tile sizes using this performance model

○ Fusion does not use this model. It uses other heuristics.

P 29

Accuracy: Tile Size Selection

Compare true runtimes between best
predicted and actual best tile size. APE:

In random split, learned model ~halves APE.

P 30

Accuracy: Fusion

Compare Mean Absolute Percentage
Error of kernel runtime predictions.

Random split: learned model improves
MAPE by ~85%.

P 31

Ablations: takeaways

● Using a rank loss for the tile-size task reduced APE by 10 pts. on
average.

● GraphSAGE outperformed using a Graph Attention Networks or
sequence model and was less sensitive to hyperparameter
selection.

● Replacing the LSTM/Transformer reduction with a non-learned
reduction works almost as well (and improves inference time).

http://snap.stanford.edu/graphsage/
https://arxiv.org/pdf/1710.10903.pdf

P 32

Training for All Optimization Tasks

● Generate training data from 150 ML models using random
layout, fusion, tile size, and flag configurations.

● Train:
○ one model for all graph-level optimizations to predict

absolute runtime
○ one model for tile-size to predict relative runtime
○ one model for flags to predict relative runtime

● The graph embedding network is shared between tile-size and
flags models.

P 33

Tuning with Learned Cost Model

Execute the top k configurations from each worker according to
the model on real hardware and pick the best.
● k = 10 for graph-level optimizations
● k = 5 for kernel-level optimizations

Runtime Speedup (x)

be
tt

er

be
tt

er

Tuning Time (min)

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Search Strategies

P 34

Learned Cost
ModelHardware

candidate cost

Evaluator

Learned
Policy

decision

observation

to guide
the search

Code
Optimizer

P 35

Search Strategies

● Exhaustive
● Simulated annealing (SA)
● Evolutionary (EVO)
● Model-based optimization (MBO)
● Deep reinforcement learning (RL)

P 36

Model-Based Optimization (MBO)

● At each optimization round, a set of candidate regression models
are fit to the acquired data.

● Good models are assembled to define an acquisition function.

● The acquisition function is then optimized by EVO to generate a
new batch of samples.

● Candidate models: ridge regression, random forests, gradient
boosting, and neural networks

Ref: Angermueller et al., Model-based reinforcement learning for biological sequence design,
ICLR 2019

P 37

Deep Reinforcement Learning (RL)

● Designed specifically for ML compiler’s graph optimizations

● Uses a graph neural network to create node embeddings and
segmented recurrent attention layers to capture long-range
dependencies

● Non-autoregressive

○ N node decisions are done in parallel

○ Conventional autoregressive approach is infeasible as N can be
as large as 100k

Ref: Zhou et al., Transferable graph optimizers for ml compilers, NeurIPS 2020

P 38

Search Strategies: Fusion Autotuning

Average speedup across 10 runs. Each run evaluated 10,000 candidates.

XTAT: XLA TPU Autotuner

P 39

Code
Optimizer

ML
program

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

blue = optimizations that we tune
yellow = learned models

P 40

Data-Center Scale Deployment

P 41

Fleet-Wide TPU Autotuning at Google

Job Profiling/Ranking

Task Google Wide Profiling ProfileDB XLA

Version
Control

XLA-AutoFDO
frontend

XLA-FDO
Profiles

Query
FDO
Profile

+ AutoFDO Tag

Monitoring, Abnormality Detection, Maintenance

ML-Insights Issue Tracker / Email
Notifying SREs

Getting Autotuning Configurations as the FDO Profiles
XLA-AutoFDO

BackendXLA Offline Tuning

P 42

Fleet-Wide TPU Autotuning at Google

● Have deployed the tile size and flags autotuning to optimize top
workloads in the TPU fleet daily

● Learned cost model enabled tuning 20x more kernels per day

● Save >1% of total TPU consumption

● Savings / tuning cost: >10x

References

P 43

Phothilimthana et al., A Flexible Approach to Autotuning
Multi-Pass Machine Learning Compilers, PACT 2021.

Kaufman and Phothilimthana et al., A Learned Performance
Model for Tensor Processing Units, MLSys 2021.

Contributors

Mangpo Phothilimthana
Amit Sabne
Karthik Srinivasa Murthy
Nikhil Sarda
Yanqi Zhou
Christof Angermueller
Emma Wang
Sam Kaufman
Charith Mendis
Sudip Roy
Mike Burrows

P 44

Berkin Ilbeyi
Bjarke Roune
Blake Hechtman
Ketan Mandke
Rezsa Farahani
Shen Wang
Yuanzhong Xu

