

ML for Autotuning ------Production ML Compilers

Phitchaya Mangpo Phothilimthana mangpo@google.com

Search-Based ML Compilers

ope	graph	TASO PET	DeepCuts
optimization sc	subgraph		TVM Halide TensorComp FlexTensor Ansor AdaTune Chameleon

Search-Based ML Compilers

Search at Subgraph Level is Suboptimal

A common strategy **partitions** a graph into subgraphs **according to the neural net layers**, ignoring cross-layer optimization opportunities.

<u>Empirical result</u>: a **regression** of **up to 2.6x** and **32% on average** across 150 ML models by limiting fusions in XLA to be within layers.

Search-Based ML Compilers

ope	graph	TASO PET	DeepCuts
optimization sc	subgraph		TVM Halide TensorComp FlexTensor Ansor AdaTune Chameleon

Search Approaches: Long Compile Time

Production Compilers: Multi-Pass

- Models evaluated by research compilers: up to 1,000 node
- Industrial-scale models: up to **500,000 nodes!**
- That's why **production ML compilers** still decompose the compilation into **multiple passes**.
- None of the existing approaches **support** autotuning different optimizations in a **multi-pass compiler**.
 - **Challenge**: search space of a pass is highly dependent on decisions made in prior passes.

Our Goal

Bring the benefits of **search-based** exploration to **multi-pass compilers**:

- for both graph and subgraph levels
- with flexibility via configurable search to tune subset of optimizations of interest

Google Research

Production ML Compilation Stack at Google

XTAT: XLA TPU Autotuner

XTAT: XLA TPU Autotuner

Pass Configuration

configuration on a tensor graph for an optimization pass is a collection of per-node configurations that control how the pass transforms each node in the graph

Layout Assignment

Example:

Layout Assignment

Example:

Layout Search Space

Option #1: Naive

- Layout options for **each input/output** are **permutation** of its dimensions.
- Many **invalid configs** because there are constraints between tensors.

Option #2: Proposed

- Tune **layout options for important ops** (convolution and reshape).
- For each important op, get valid input-output layouts from XLA.
- Leverage XLA layout propagation algorithm.

Operator Fusion

Example:

Tile Size & Code Gen Flags Search Space

Tune config for each fused node (kernel) independently.

Joint Autotuning: Challenges

$$\mathbf{g}_{\mathbf{A}} \xrightarrow{---} A(config_{\mathbf{A}}) \xrightarrow{---} \mathbf{g}_{\mathbf{B}} \xrightarrow{----} B(config_{\mathbf{B}}) \xrightarrow{----} \mathbf{g}_{out}$$

 $config_A$ determines the input graph g_B to pass B and its search space

When we change $config_A$ to $config_A'$, g_B is changed, and $config_B$ is no longer valid.

How to not start the search for B from scratch when $config_A$ is changed?

Methodology for Joint Autotuning

function SEARCHSTEP(C) $opt_{id} \leftarrow \underline{SelectOpt}(Opts)$ $C' \leftarrow \underline{GenerateCandidates}(opt_{id}, C)$ for c : C' do $UpdateAndApplyCandidate(opt_{id}, c)$ Evaluate(c)end for return <u>SelectCandidates</u>(C,C') end function Returns: A, B, C, A, B, C, ... (joint tuning) A, A, ..., B, B, ..., C, C, ... (sequential) or some combinations of them

Methodology for Joint Autotuning

function SEARCHSTEP(C) $opt_{id} \leftarrow \mathbf{SelectOpt}(Opts)$ $C' \leftarrow \text{GenerateCandidates}(opt_{id}, C)$ for c: C' do $UpdateAndApplyCandidate(opt_{id}, c)$ Evaluate(c)end for return SelectCandidates(C, C)end function

Candidate c: c.graphs = $[g_A, g_B, g_{out}]$

c.configs = $[config_A, config_B]$

Change config_A: c.graphs = $[g_A, g_B, g_{out}]$ c.configs = $[config_A, config_B]$

Fix c to be well-formed: c.graphs = $[g_A, g_B', g_{out}']$ c.configs = $[config_A', config_B']$

Construct Well-Formed Candidate

Key ideas:

- Update subsequent graphs
- Update config_B' to have configurations for all nodes in g_B' from:
 - config_B
 - global configuration store (maintaining the best config per node)
 - default value

Change config_A: c.graphs = $[g_A, g_B, g_{out}]$ c.configs = $[config_A', config_B]$ Fix c to be well-formed: c.graphs = $[g_A, g_B', g_{out}']$ c.configs = $[config_A', config_B']$

End-to-End Search Schedule

- Separate tuning graph-level and kernel-level optimizations for scalability
- Tuning layout + fusion jointly is better than sequentially
- Tuning tile size + flag jointly is worse than sequentially

Tune **layout-fusion jointly** (simulated annealing) → then tune **tile size** (exhaustive)

 \rightarrow then tune code gen **flags** (exhaustive)

End-to-End Runtime Speedup

We measured end-to-end model speedups from autotuning **150 ML models**. The figure shows models that achieve 5% or more improvement.

Google Research

Learned Cost Model

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021. P24

Overview of Cost Model

1. Decompose Into Kernels

2. Regression Per Kernel

= 5.2s

Model Architecture

Losses

Mean Squared Error for absolute runtime prediction. Targets are log-transformed.

$$L = \sum_{i=1}^{n} (y'_i - y_i)^2$$

$$L = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\phi(y'_i - y'_j) \cdot pos(y_i - y_j)}{n \cdot (n-1)/2}$$

Pairwise Rank Loss for relative runtime prediction.

 $\phi(z) = \begin{cases} (1-z)_+ & \text{hinge function or} \\ log(1+e^{-z}) & \text{logistic function} \end{cases}$

$$pos(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Accuracy Evaluation and Baseline

- Accuracy evaluation tasks
 - Tile size selection (relative runtimes)
 - Fusion (absolute runtimes)
- **Baseline**: XLA's hand-written, analytical performance model
 - XLA argmins all tile sizes using this performance model
 - Fusion does not use this model. It uses other heuristics.

Accuracy: Tile Size Selection

Compare true runtimes between best predicted and actual best tile size. APE:

$$100 \times \frac{\sum_{k \in K} |t_{c'_k}^k - \min_{c \in C_k} t_c^k|}{\sum_{k \in K} \min_{c \in C_k} t_c^k}$$

In random split, learned model ~halves APE.

	Learned	Analytical
ConvDRAW	9.7	
WaveRNN	1.5	2.8
NMT Model	3.1	13.1
SSD	3.9	7.3
RNN	8.0	10.2
ResNet v1	2.8	4.6
ResNet v2	2.7	5.4
Translate	3.4	7.1
Median	3.3	6.2
Mean	3.7	6.1

Google Research

Accuracy: Fusion

Compare Mean Absolute Percentage Error of kernel runtime predictions.

Random split: learned model improves MAPE by ~85%.

	Learned	Analytical
ConvDRAW	17.5	21.6
WaveRNN	2.9	322.9
NMT Model	9.8	26.3
SSD	11.4	55.9
RNN	1.9	20.5
ResNet v1	3.1	11.5
ResNet v2	2.4	13.3
Translate	2.1	27.2
Median	3.0	24.0
Mean	4.5	31.1

Ablations: takeaways

- Using a **rank loss** for the tile-size task reduced APE by 10 pts. on average.
- GraphSAGE outperformed using a Graph Attention Networks or sequence model and was less sensitive to hyperparameter selection.
- Replacing the LSTM/Transformer reduction with a non-learned reduction works almost as well (and improves inference time).

Training for All Optimization Tasks

- Generate training data from 150 ML models using random layout, fusion, tile size, and flag configurations.
- Train:
 - one model for all graph-level optimizations to predict absolute runtime
 - one model for tile-size to predict relative runtime
 - one model for **flags** to predict **relative runtime**
- The graph embedding network is shared between tile-size and flags models.

Tuning with Learned Cost Model

Execute the top k configurations from each worker according to the model on real hardware and pick the best.

- k = 10 for graph-level optimizations
- k = 5 for kernel-level optimizations

Search Strategies

Search Strategies

- Exhaustive
- Simulated annealing (SA)
- Evolutionary (EVO)
- Model-based optimization (MBO)
- Deep reinforcement learning (RL)

Model-Based Optimization (MBO)

- At each optimization round, a set of candidate **regression models** are fit to the acquired data.
- Good models are **assembled to define an acquisition function**.
- The acquisition function is then **optimized by EVO to generate a new batch of samples**.
- Candidate models: ridge regression, random forests, gradient boosting, and neural networks

Ref: Angermueller et al., Model-based reinforcement learning for biological sequence design, ICLR 2019

Deep Reinforcement Learning (RL)

- Designed specifically for ML compiler's graph optimizations
- Uses a graph neural network to create node embeddings and segmented recurrent attention layers to capture long-range dependencies
- Non-autoregressive
 - N node decisions are done in parallel
 - Conventional autoregressive approach is infeasible as N can be as large as 100k

Ref: Zhou et al., Transferable graph optimizers for ml compilers, NeurIPS 2020

Search Strategies: Fusion Autotuning

Average speedup across 10 runs. Each run evaluated 10,000 candidates.

XTAT: XLA TPU Autotuner

.

: 	
	•

Google Research

Data-Center Scale Deployment

Fleet-Wide TPU Autotuning at Google

Fleet-Wide TPU Autotuning at Google

- Have deployed the tile size and flags autotuning to optimize top workloads in the TPU fleet daily
- Learned cost model enabled tuning 20x more kernels per day
- Save >1% of total TPU consumption
- Savings / tuning cost: >10x

References

Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.

Kaufman and Phothilimthana et al., **A Learned Performance Model for Tensor Processing Units**, MLSys 2021.

Contributors

Mangpo Phothilimthana Amit Sabne Karthik Srinivasa Murthy Nikhil Sarda Yangi Zhou Christof Angermueller Emma Wang Sam Kaufman Charith Mendis Sudip Roy Mike Burrows

Berkin Ilbeyi Bjarke Roune Blake Hechtman Ketan Mandke Rezsa Farahani Shen Wang Yuanzhong Xu