

ML for ML Compilers at Google

Phitchaya "Mangpo" Phothilimthana mangpo@google.com

Presenting the work of many people at Google

Production ML Compilation Stack at Google

Goal:

automatically select optimal compiler configurations, at scale for all ML workloads in Google's fleet

Compiler & Autotuner

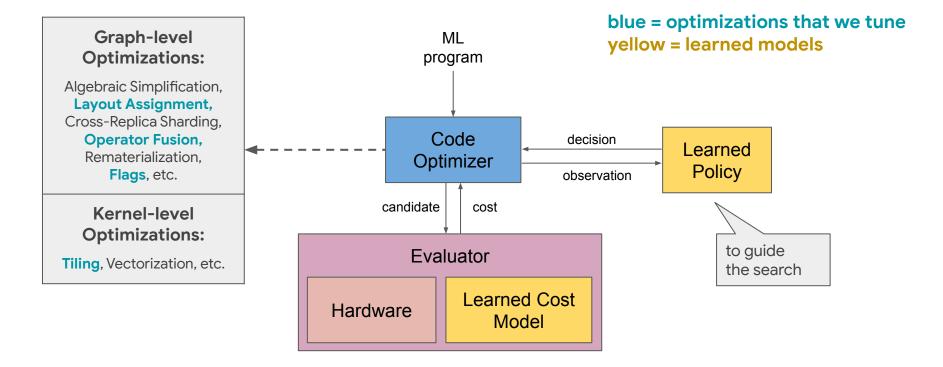
Compiler

- Transforms program written in high-level language to low-level representation
- Optimizes program for performance through heuristics (often in polynomial time)

Autotuner

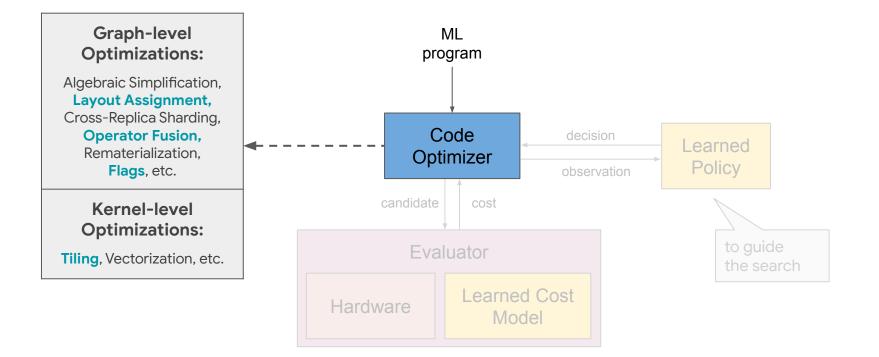
- Aids compiler to find better optimization decisions
- Searches a space of configurations of a program
- Selects the best configuration according to a performance metric

XTAT: XLA TPU Autotuner



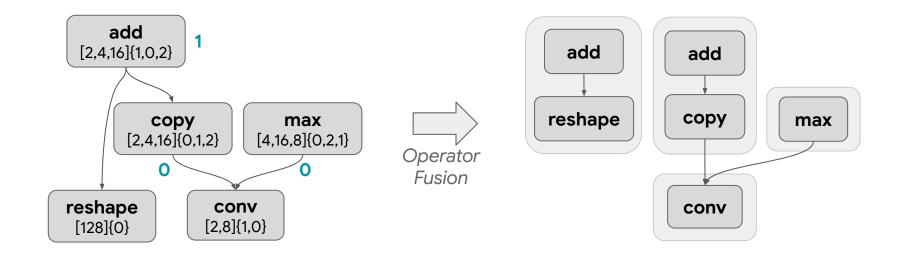
Ref: Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.

XTAT: XLA TPU Autotuner



Operator Fusion

Example:

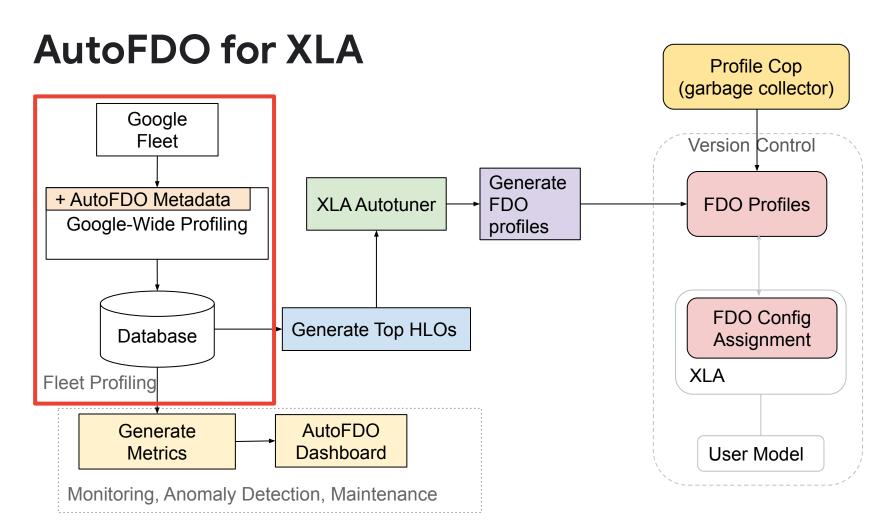


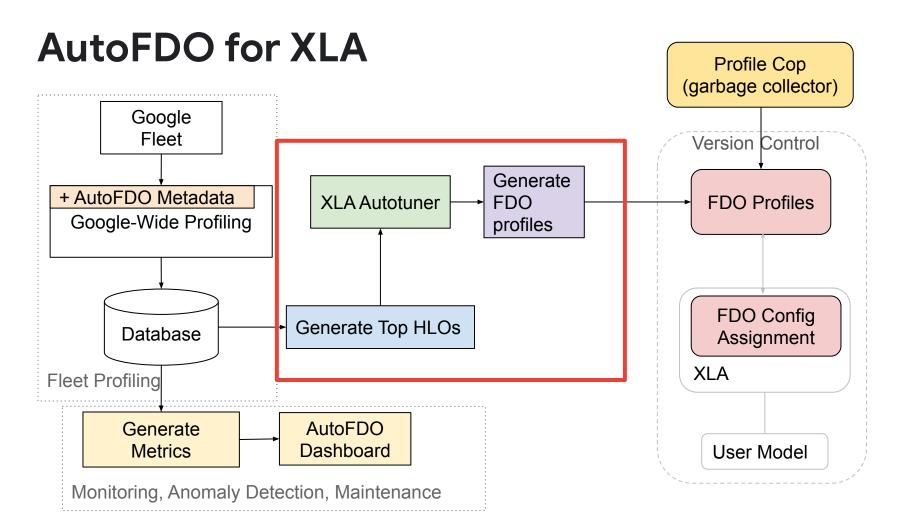
Runtime Speedup

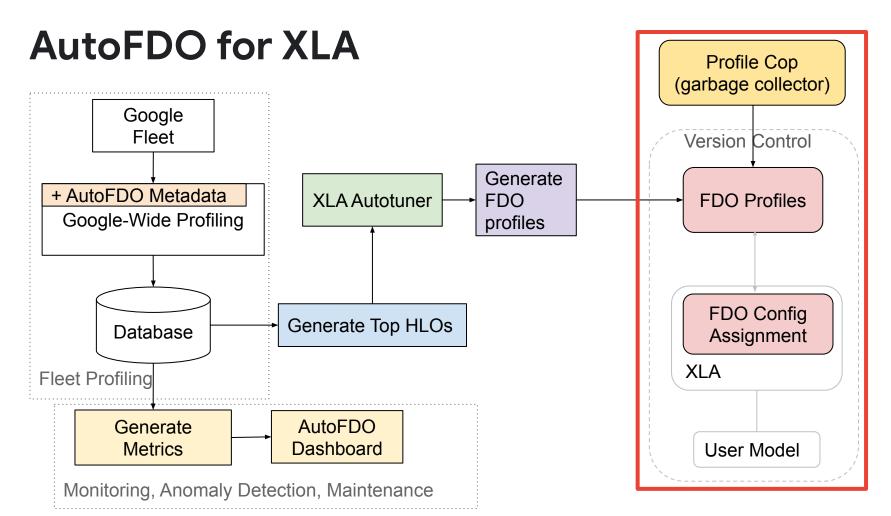
Average speedup on top workloads at Google

Delivered **5-25% speedup** on **important production models** by tuning flags

Data-Center Scale Deployment



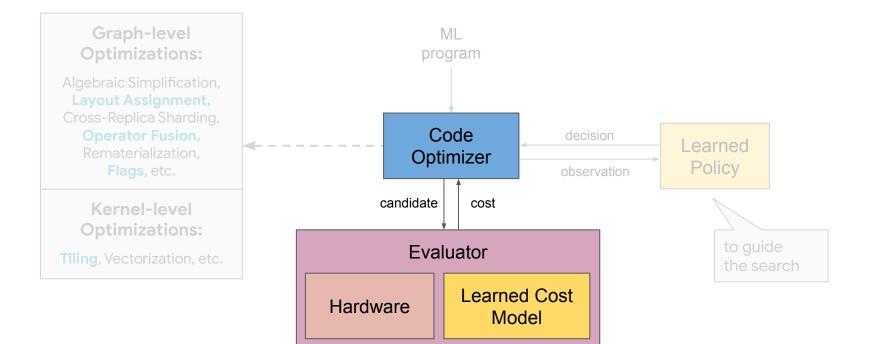


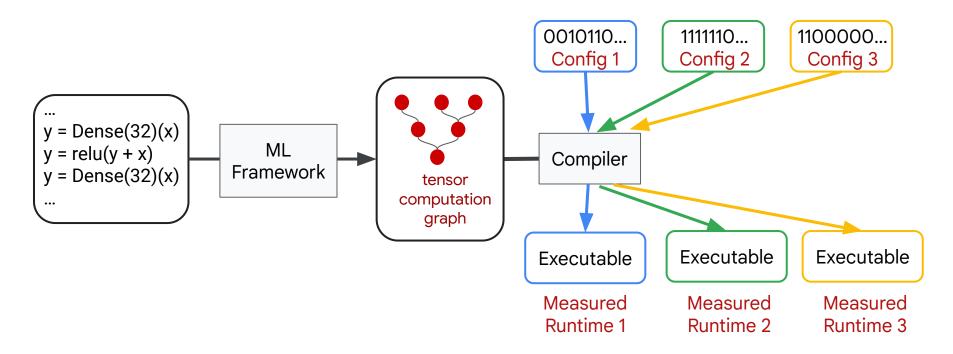


AutoFDO for XLA

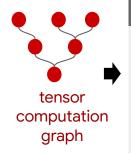
- Have deployed the **tile size autotuning** to optimize top workloads in the TPU fleet daily
- Save ~2% of total TPU consumption
- Savings / tuning cost: ~15x
- Learned cost model enabled tuning 20x more kernels per day

Learned Cost Model

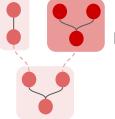




Target Optimizations

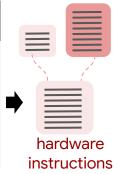




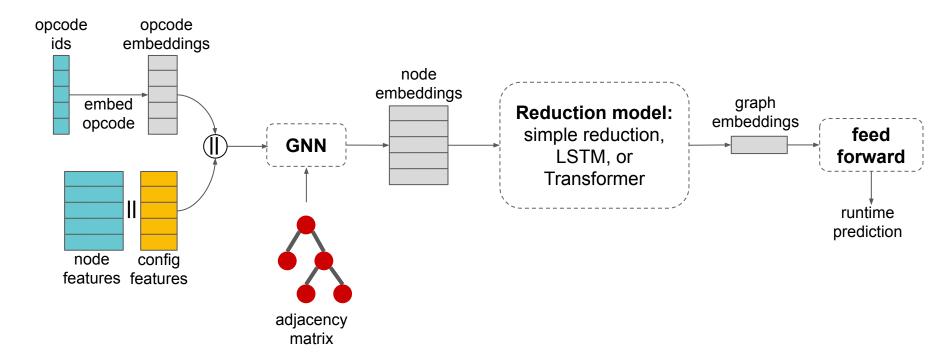


kernels / subgraphs Kernel-Level HW Lowering

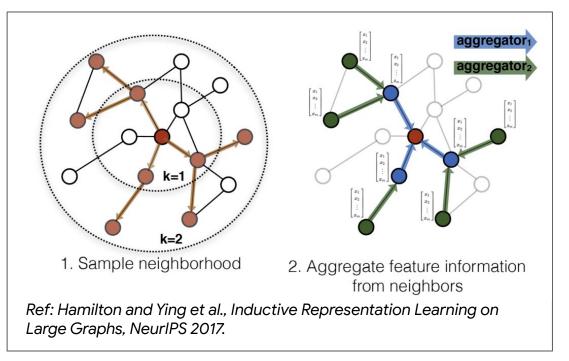
loop tiling / ordering / unrolling, overlapping data-transfer & compute*, parllelization*, vecterization*, 2D register mapping*



Model Architecture



GraphSage



Node embedding:

$$\varepsilon_{i}^{k} = l_{2} \left(f_{3}^{k} \left(concat \left(\varepsilon_{i}^{k-1}, \sum_{j \in neighbors(i)} f_{2}^{k}(\varepsilon_{j}^{k-1}) \right) \right) \right) \qquad \begin{array}{c} f: \text{ feedforward} \\ l_{2}: \text{L2 norm} \end{array}$$

Losses

Mean Squared Error for absolute runtime prediction. Targets are log-transformed.

$$L = \sum_{i=1}^{n} (y'_i - y_i)^2$$

n

$$L = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\phi(y'_i - y'_j) \cdot pos(y_i - y_j)}{n \cdot (n-1)/2}$$

Pairwise Rank Loss for relative runtime prediction.

 $\phi(z) = \begin{cases} (1-z)_+ & \text{hinge function } \mathbf{or} \\ \log(1+e^{-z}) & \text{logistic function} \end{cases}$

$$pos(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Evaluation Metrics

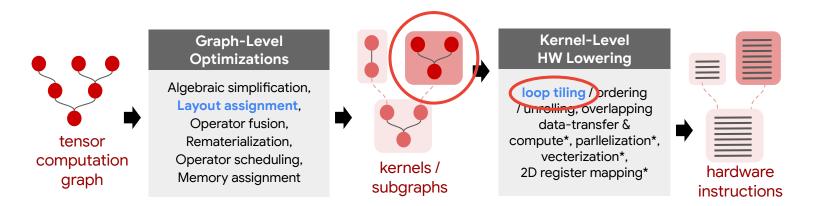
Top-K Error: slow down compared to optimal

 $\frac{\text{The best runtime of the top-k predictions}}{\text{The best runtime of all configurations}} - 1 = \frac{\min_{i \in K} y_i}{\min_{i \in A} y_i} - 1$

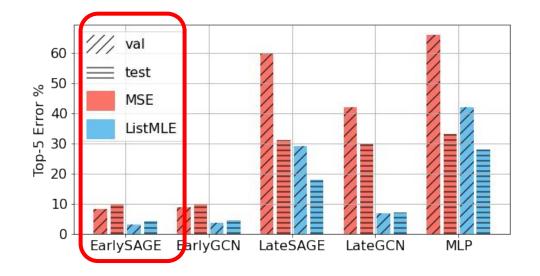
Ranking Correlation: ability to guide the search

Kendall-Tau (model rank, gound-truth rank)

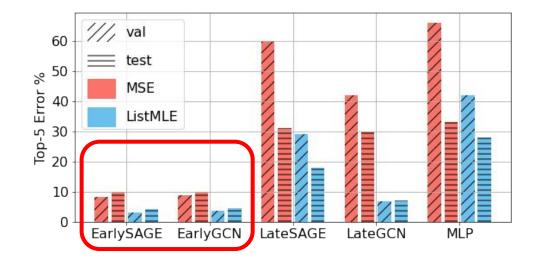
Tile Size Runtime Prediction (Kernel Level)



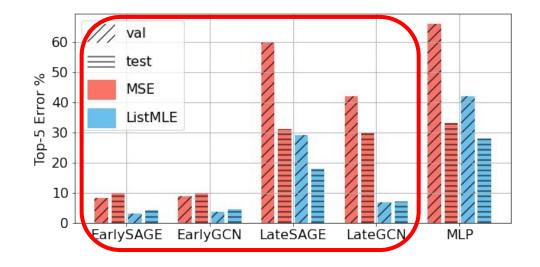
Results: Top-K Error

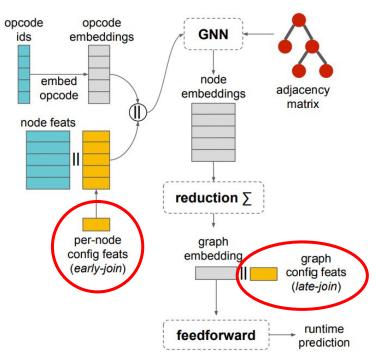


Results: Top-K Error

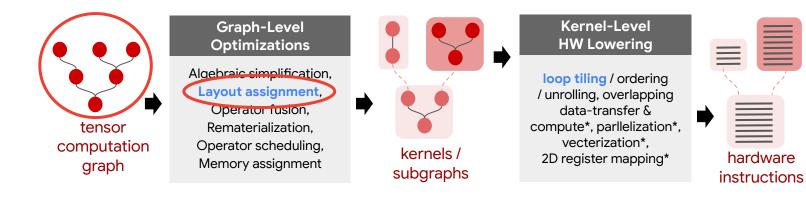


Results: Top-K Error

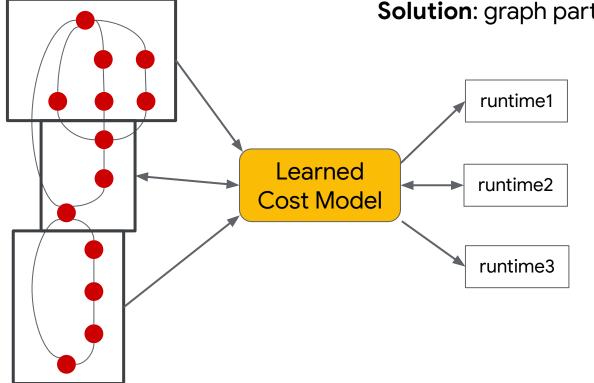




Layout Runtime Prediction (Graph Level)

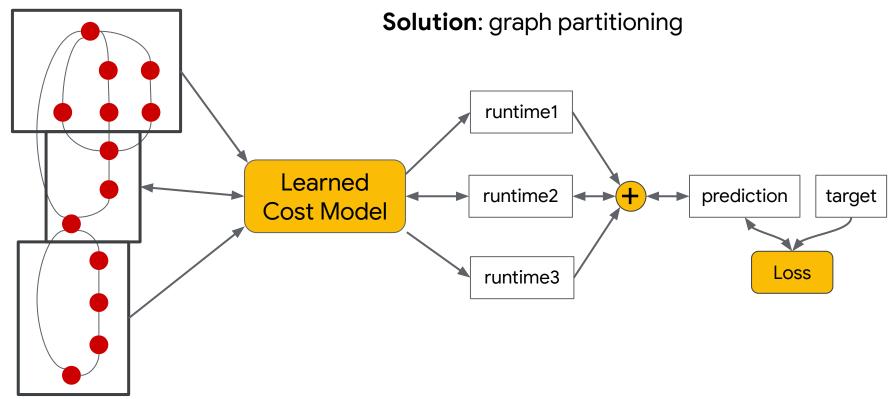


Challenge 1: HLO graphs are huge! (up to 500k nodes)

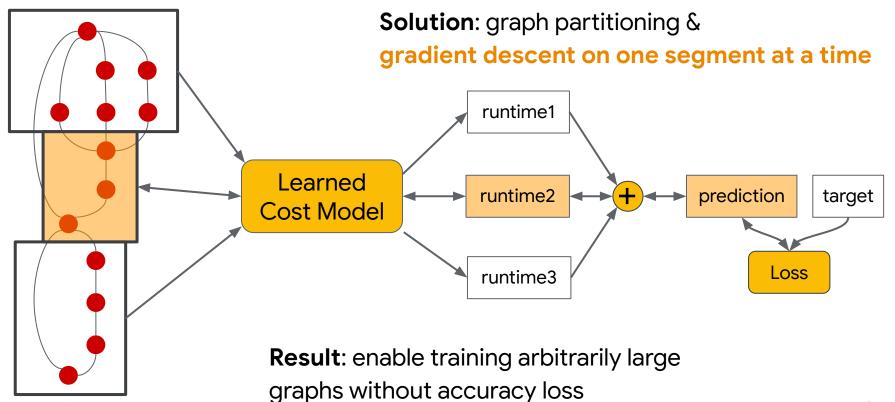


Solution: graph partitioning

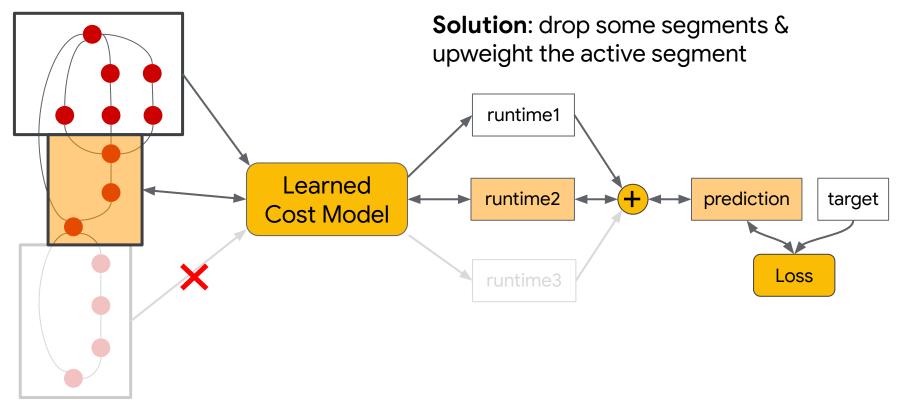
Challenge 1: HLO graphs are huge! (up to 500k nodes)



Challenge 1: HLO graphs are huge! (up to 500k nodes)

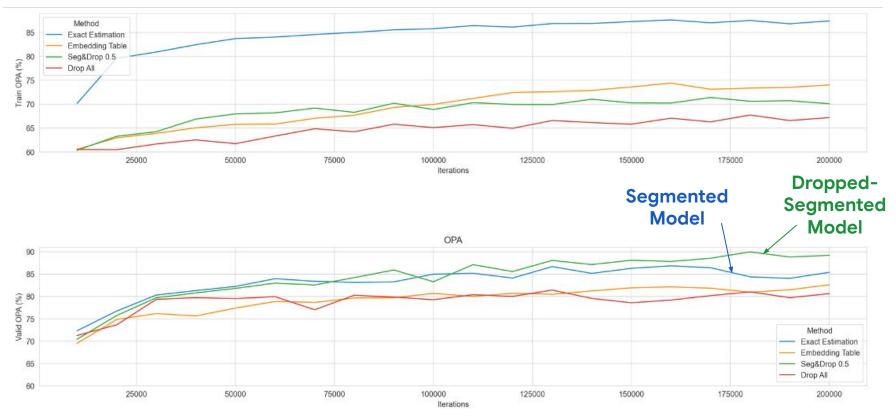


Challenge 2: HLO graphs are very diverse



Result: Better Generalization

OPA = Ordered Pair Accuracy

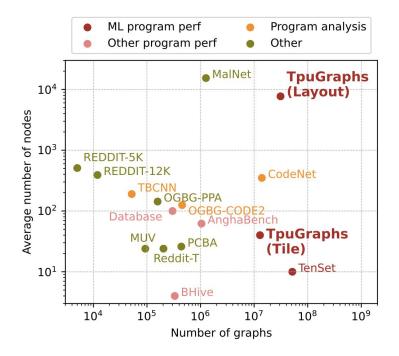


Ref: Cao et al., Learning Large Graph Property Prediction via Graph Segment Training, NeurIPS 2023

Ablation Study: Top-K Error

Model	Тор	Top-1 E Top-10 H		10 E	Top-100 E	
	Val	Test	Val	Test	Val	Test
Best	24.3	25.3	6.4	10.4	0.4	1.2
Full Graph	34.3	39.6	11.5	14.9	0.7	2.6
Small Segment	37.9	47.3	13.3	17.9	1.4	3.5
Topo Partition	27.5	27.1	6.5	10.1	0.6	1.5
Fewer Layers	26.9	28.2	7.9	12.5	0.7	1.7
MSE loss	42.7	53.1	12.6	18.8	1.6	3.8
Random	58.1	90.5	15.7	20.6	1.8	3.6

TpuGraphs dataset



Ref: Phothilimthana et al., TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs, NeurIPS 2023

TpuGraphs dataset

Collection {opt}:{src}:{space}	Avg # of Nodes	# of Graphs + Configs	
Layout:XLA:Default	14,105 (372 - 43,614)	771,496	
Layout:XLA:Random	(372 - 43,014)	908,561	
Layout:NLP:Default	5,659 (876-21,919)	13,285,415	
Layout:NLP:Random	(010-21,919)	16,125,781	
Tile:XLA	40	12,870,077	

Ref: Phothilimthana et al., TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs, NeurIPS 2023

TpuGraphs dataset

Dataset: <u>github.com/google-research-datasets/tpu_graphs</u>

Competition: <u>kaggle.com/competitions/predict-ai-model-runtime</u>

- Final submission deadline: November 17
- Total prizes: **\$50,000**
- Winners will be invited to present at ML for Systems Workshop @ NeurIPS

References

Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.

Kaufman and Phothilimthana et al., **A Learned Performance Model for Tensor Processing Units**, MLSys 2021.

Cao et al., Learning Large Graph Property Prediction via Graph Segment Training, NeurIPS 2023.

Phothilimthana et al., **TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs**, NeurIPS 2023.