
ML for ML Compilers
at Google

Phitchaya “Mangpo” Phothilimthana
mangpo@google.com

Presenting the work of many people at Google
1

Production ML Compilation Stack at Google

P 2

...

Goal:
automatically select optimal

compiler configurations,
at scale for all ML workloads in

Google’s fleet

Google DeepMind

Compiler
● Transforms program written

in high-level language to
low-level representation

● Optimizes program for
performance through
heuristics (often in
polynomial time)

Autotuner
● Aids compiler to find better

optimization decisions
● Searches a space of

configurations of a program
● Selects the best

configuration according to a
performance metric

Compiler & Autotuner

P 4

XTAT: XLA TPU Autotuner

P 5

Code
Optimizer

ML
program

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,
Rematerialization,

Flags, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, etc.

blue = optimizations that we tune
yellow = learned models

Ref: Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

XTAT: XLA TPU Autotuner

P 6

Code
Optimizer

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,
Rematerialization,

Flags, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, etc.

Operator Fusion

P 7

add
[2,4,16]{1,0,2}

reshape
[128]{0}

conv
[2,8]{1,0}

max
[4,16,8]{0,2,1}

copy
[2,4,16]{0,1,2}

1

0 0

Example:

add

reshape

conv

maxcopy

add

Operator
Fusion

P 8

Runtime Speedup

on top 300 workloads on
TPUs v4

Delivered 5-25% speedup on important production models by
tuning flags

Average speedup on top workloads at Google

on top 75% of workloads
on TPUs v3*

Data-Center Scale Deployment

P 9

P 10

AutoFDO for XLA

 Version Control

Monitoring, Anomaly Detection, Maintenance

Fleet Profiling

Google
Fleet

Google-Wide Profiling
XLA Autotuner

Database

Generate
Metrics

AutoFDO
Dashboard

+ AutoFDO Metadata

Generate Top HLOs

Generate
FDO
profiles

FDO Profiles

XLA

FDO Config
Assignment

Profile Cop
(garbage collector)

User Model

P 11

AutoFDO for XLA

 Version Control

Monitoring, Anomaly Detection, Maintenance

Fleet Profiling

Google
Fleet

Google-Wide Profiling
XLA Autotuner

Database

Generate
Metrics

AutoFDO
Dashboard

+ AutoFDO Metadata

Generate Top HLOs

Generate
FDO
profiles

FDO Profiles

XLA

FDO Config
Assignment

Profile Cop
(garbage collector)

User Model

P 12

AutoFDO for XLA

 Version Control

Monitoring, Anomaly Detection, Maintenance

Fleet Profiling

Google
Fleet

Google-Wide Profiling
XLA Autotuner

Database

Generate
Metrics

AutoFDO
Dashboard

+ AutoFDO Metadata

Generate Top HLOs

Generate
FDO
profiles

FDO Profiles

XLA

FDO Config
Assignment

Profile Cop
(garbage collector)

User Model

P 13

AutoFDO for XLA

● Have deployed the tile size autotuning to optimize top
workloads in the TPU fleet daily

● Save ~2% of total TPU consumption
● Savings / tuning cost: ~15x
● Learned cost model enabled tuning 20x more kernels per day

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,
Rematerialization,

Flags, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, etc.

Learned
Policy

decision

observation

to guide
the search

Learned Cost Model

P 14

Code
Optimizer

Learned Cost
ModelHardware

candidate cost

Evaluator

Task: Config Ranking

P 15

…
y = Dense(32)(x)
y = relu(y + x)
y = Dense(32)(x)
…

ML
Framework

Executable

1111110…
Config 2

1100000…
Config 3

Compiler

Measured
Runtime 1

tensor
computation

graph

0010110…
Config 1

Executable Executable

Measured
Runtime 2

Measured
Runtime 3

Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level
Optimizations

tensor
computation

graph
kernels /

subgraphs
hardware

instructions

loop tiling / ordering
/ unrolling, overlapping

data-transfer &
compute*, parllelization*,

vecterization*,
2D register mapping*

Kernel-Level
HW Lowering

Target Optimizations

P 17

Model Architecture

GNN

embed
opcode

node
features

opcode
ids

opcode
embeddings

config
features

adjacency
matrix

node
embeddings

||

||

Reduction model:
simple reduction,

LSTM, or
Transformer

feed
forward

graph
embeddings

runtime
prediction

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.

P 18

Ref: Hamilton and Ying et al., Inductive Representation Learning on
Large Graphs, NeurIPS 2017.

GraphSage

Node embedding:
f: feedforward
l2: L2 norm

P 19

Losses
Mean Squared Error
for absolute runtime prediction.
Targets are log-transformed.

1 if z > 0
0 otherwise

hinge function or
logistic function

Pairwise Rank Loss
for relative runtime prediction.

Top-K Error: slow down compared to optimal

Ranking Correlation: ability to guide the search

Kendall-Tau(model rank, gound-truth rank)

Evaluation Metrics

Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level
Optimizations

tensor
computation

graph
kernels /

subgraphs
hardware

instructions

loop tiling / ordering
/ unrolling, overlapping

data-transfer &
compute*, parllelization*,

vecterization*,
2D register mapping*

Kernel-Level
HW Lowering

Tile Size Runtime Prediction (Kernel Level)

Results: Top-K Error

Results: Top-K Error

Results: Top-K Error

Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level
Optimizations

tensor
computation

graph
kernels /

subgraphs
hardware

instructions

loop tiling / ordering
/ unrolling, overlapping

data-transfer &
compute*, parllelization*,

vecterization*,
2D register mapping*

Kernel-Level
HW Lowering

Layout Runtime Prediction (Graph Level)

P 26

Challenge 1: HLO graphs are huge! (up to 500k nodes)

Learned
Cost Model

runtime1

runtime2

runtime3

Solution: graph partitioning

P 27

Challenge 1: HLO graphs are huge! (up to 500k nodes)

Learned
Cost Model

runtime1

runtime2

runtime3

+ prediction target

Loss

Solution: graph partitioning

P 28

Challenge 1: HLO graphs are huge! (up to 500k nodes)

Learned
Cost Model

runtime1

runtime2

runtime3

+ prediction target

Loss

Solution: graph partitioning &
gradient descent on one segment at a time

Result: enable training arbitrarily large
graphs without accuracy loss

P 29

Challenge 2: HLO graphs are very diverse

+Learned
Cost Model

runtime1

runtime2

runtime3

prediction target

Loss

Solution: drop some segments &
upweight the active segment

P 30

Result: Better Generalization

Segmented
Model

Dropped-
Segmented

Model

OPA = Ordered Pair Accuracy

Ref: Cao et al., Learning Large Graph Property Prediction via Graph Segment Training, NeurIPS 2023

Ablation Study: Top-K Error

TpuGraphs dataset

Ref: Phothilimthana et al., TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs, NeurIPS 2023

TpuGraphs dataset

Collection
{opt}:{src}:{space}

Avg # of
Nodes

of Graphs
+ Configs

Layout:XLA:Default 14,105
(372 - 43,614)

771,496

Layout:XLA:Random 908,561

Layout:NLP:Default 5,659
(876-21,919)

13,285,415

Layout:NLP:Random 16,125,781

Tile:XLA 40 12,870,077

Ref: Phothilimthana et al., TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs, NeurIPS 2023

TpuGraphs dataset

Dataset: github.com/google-research-datasets/tpu_graphs

Competition: kaggle.com/competitions/predict-ai-model-runtime
● Final submission deadline: November 17
● Total prizes: $50,000
● Winners will be invited to present at ML for Systems Workshop @ NeurIPS

http://github.com/google-research-datasets/tpu_graphs
https://www.kaggle.com/competitions/predict-ai-model-runtime

Phothilimthana et al., A Flexible Approach to Autotuning
Multi-Pass Machine Learning Compilers, PACT 2021.

Kaufman and Phothilimthana et al., A Learned Performance
Model for Tensor Processing Units, MLSys 2021.

Cao et al., Learning Large Graph Property Prediction via Graph
Segment Training, NeurIPS 2023.

Phothilimthana et al., TpuGraphs: A Performance Prediction
Dataset on Large Tensor Computational Graphs, NeurIPS
2023.

References

P 35

