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Production ML Compilation Stack at Google
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Goal: 
automatically select optimal 

compiler configurations, 
at scale for all ML workloads in 

Google’s fleet



Google DeepMind

Compiler
● Transforms program written 

in high-level language to 
low-level representation

● Optimizes program for 
performance through 
heuristics (often in 
polynomial time)

Autotuner
● Aids compiler to find better 

optimization decisions
● Searches a space of 

configurations of a program
● Selects the best 

configuration according to a 
performance metric

Compiler & Autotuner
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XTAT: XLA TPU Autotuner
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Code
Optimizer

ML 
program

Learned 
Policy

decision

observation

to guide 
the search

Learned Cost 
ModelHardware

candidate cost

Evaluator

Graph-level 
Optimizations:

Algebraic Simplification,
Layout Assignment, 

Cross-Replica Sharding, 
Operator Fusion, 
Rematerialization, 

Flags, etc.

Kernel-level 
Optimizations: 

Tiling, Vectorization, etc.

blue = optimizations that we tune
yellow = learned models

Ref: Phothilimthana et al., A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers, PACT 2021.
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Operator Fusion
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Runtime Speedup

on top 300 workloads on 
TPUs v4

Delivered 5-25% speedup on important production models by 
tuning flags

Average speedup on top workloads at Google

on top 75% of workloads 
on TPUs v3*



Data-Center Scale Deployment
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AutoFDO for XLA

   Version Control

Monitoring, Anomaly Detection, Maintenance 

Fleet Profiling

Google 
Fleet

Google-Wide Profiling
XLA Autotuner

Database

Generate 
Metrics

AutoFDO 
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+ AutoFDO Metadata

Generate Top HLOs

Generate 
FDO 
profiles

FDO Profiles

XLA

FDO Config 
Assignment

Profile Cop
(garbage collector)

User Model
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AutoFDO for XLA

● Have deployed the  tile size autotuning to optimize top 
workloads in the TPU fleet daily

● Save ~2% of total TPU consumption
● Savings / tuning cost: ~15x
● Learned  cost  model  enabled tuning  20x more  kernels  per  day



ML 
program

Graph-level 
Optimizations:

Algebraic Simplification,
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Task: Config Ranking
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…
y = Dense(32)(x)
y = relu(y + x)
y = Dense(32)(x)
…

ML 
Framework

Executable

1111110…
Config 2

1100000…
Config 3

Compiler

Measured 
Runtime 1

tensor 
computation 

graph

0010110…
Config 1

Executable Executable
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Runtime 2
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Runtime 3



Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level 
Optimizations

tensor 
computation 

graph
kernels / 

subgraphs
hardware 

instructions

loop tiling / ordering 
/ unrolling, overlapping 

data-transfer & 
compute*, parllelization*, 

vecterization*,
2D register mapping*

Kernel-Level 
HW Lowering

Target Optimizations
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Model Architecture

GNN

embed 
opcode

node 
features

opcode
ids

opcode 
embeddings

config 
features

adjacency 
matrix

node 
embeddings

||

||

Reduction model: 
simple reduction, 

LSTM, or 
Transformer

feed
forward

graph 
embeddings

runtime 
prediction

Ref: Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.
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Ref: Hamilton and Ying et al., Inductive Representation Learning on 
Large Graphs, NeurIPS 2017.

GraphSage

Node embedding:
f: feedforward
l2: L2 norm
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Losses
Mean Squared Error
for absolute runtime prediction.
Targets are log-transformed.

1 if z > 0
0 otherwise

hinge function or
logistic function

Pairwise Rank Loss
for relative runtime prediction.



Top-K Error: slow down compared to optimal

Ranking Correlation: ability to guide the search

Kendall-Tau(model rank, gound-truth rank)

Evaluation Metrics



Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level 
Optimizations

tensor 
computation 

graph
kernels / 

subgraphs
hardware 

instructions

loop tiling / ordering 
/ unrolling, overlapping 

data-transfer & 
compute*, parllelization*, 

vecterization*,
2D register mapping*

Kernel-Level 
HW Lowering

Tile Size Runtime Prediction (Kernel Level)



Results: Top-K Error



Results: Top-K Error



Results: Top-K Error



Algebraic simplification,
Layout assignment,

Operator fusion,
Rematerialization,

Operator scheduling,
Memory assignment

Graph-Level 
Optimizations

tensor 
computation 

graph
kernels / 

subgraphs
hardware 

instructions

loop tiling / ordering 
/ unrolling, overlapping 

data-transfer & 
compute*, parllelization*, 

vecterization*,
2D register mapping*

Kernel-Level 
HW Lowering

Layout Runtime Prediction (Graph Level)
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Challenge 1: HLO graphs are huge! (up to 500k nodes)

Learned 
Cost Model

runtime1

runtime2

runtime3

Solution: graph partitioning 
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Challenge 1: HLO graphs are huge! (up to 500k nodes)

Learned 
Cost Model

runtime1

runtime2

runtime3

+ prediction target

Loss

Solution: graph partitioning & 
gradient descent on one segment at a time

Result: enable training arbitrarily large 
graphs without accuracy loss
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Challenge 2: HLO graphs are very diverse

+Learned 
Cost Model

runtime1

runtime2

runtime3

prediction target

Loss

Solution: drop some segments & 
upweight the active segment
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Result: Better Generalization

Segmented 
Model

Dropped- 
Segmented 

Model

OPA = Ordered Pair Accuracy

Ref: Cao et al., Learning Large Graph Property Prediction via Graph Segment Training, NeurIPS 2023



Ablation Study: Top-K Error



TpuGraphs dataset

Ref: Phothilimthana et al., TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs, NeurIPS 2023



TpuGraphs dataset

Collection
{opt}:{src}:{space}

Avg # of 
Nodes

# of Graphs 
+ Configs

Layout:XLA:Default 14,105 
(372 - 43,614)

771,496

Layout:XLA:Random 908,561

Layout:NLP:Default 5,659 
(876-21,919)

13,285,415

Layout:NLP:Random 16,125,781

Tile:XLA 40 12,870,077

Ref: Phothilimthana et al., TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs, NeurIPS 2023



TpuGraphs dataset

Dataset: github.com/google-research-datasets/tpu_graphs

Competition: kaggle.com/competitions/predict-ai-model-runtime
● Final submission deadline: November 17
● Total prizes: $50,000
● Winners will be invited to present at ML for Systems Workshop @ NeurIPS

http://github.com/google-research-datasets/tpu_graphs
https://www.kaggle.com/competitions/predict-ai-model-runtime
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