Google DeepMind

Phitchaya Mangpo Phothilimthana*, Sami Abu-El-Haija*, Kaidi Cao[◆], Bahare Fatemi*, Mike Burrows*, Charith Mendis[◇], Bryan Perozzi*

*Google, ◆Stanford, ◇UIUC

Make ML models faster!

- At Google, we achieve **5-25% speedup** on important production models by searching config space.
- Learned cost model reduces the search time.

Target Optimizations

Graph-Level Optimizations Algebraic simplification, Layout assignment, Operator fusion, Rematerialization, Operator scheduling

Operator scheduling, Memory assignment

kernels / subgraphs Kernel-Level HW Lowering

loop tiling / ordering / unrolling, overlapping data-transfer & compute*, parllelization*, vecterization*, 2D register mapping*

Layout Assignment Example:

Tiling Optimization: Tile Size Selection

TpuGraphs Dataset Collections

{opt}:{src}:{space}

layout tile

XIA: diverse types of ML models (e.g. vision, NLP, speech, audio, and recommendation) nlp: variety of transformer models default: configs generated from genetic algorithm random: configs generated from random search

TpuGraphs Statistic

Collection {opt}:{src}:{space}	Avg # of Nodes	# of Graphs + Configs	
Layout:XLA:Default	14,105 (372 - 43,614)	771,496	
Layout:XLA:Random		908,561	
Layout:NLP:Default	5,659	13,285,415	
Layout:NLP:Random	(010-21,919)	16,125,781	
Tile:XLA	40	12,870,077	

Graph property prediction datasets

Evaluation Metrics

Top-K Error: slow down compared to optimal

 $\frac{\text{The best runtime of the top-k predictions}}{\text{The best runtime of all configurations}} - 1 = \frac{\min_{i \in K} y_i}{\min_{i \in A} y_i} - 1$

Ranking Correlation: ability to guide the search

Kendall-Tau (model rank, gound-truth rank)

Best GNN Baselines

Collection	Kendall $ au$		Тор- <i>K</i> ₁ Е %		Top- <i>K</i> ₂ E %		Top- <i>K</i> ₃ E %	
	Val	Test	Val	Test	Val	Test	Val	Test
Layout:XLA:Random	0.19	0.34	19.8	10.9	12.3	5.7	9.7	1.6
Layout:XLA:Default	0.12	0.21	3.8	14.1	1.9	0.6	0.3	0.2
Layout:NLP:Random	0.58	0.53	2.1	4.6	2.0	1.0	0.6	0.09
Layout:NLP:Default	0.30	0.28	4.0	4.0	3.7	3.1	3.5	0.13
Tile:XLA	_		10.5	10.8	3.9	3.4	2.7	2.1

 $(K_{1'}, K_{2'}, K_{3}) = \begin{cases} (1, 10, 100) \text{ for layout} \\ (1, 5, 10) \text{ for tile} \end{cases}$

TpuGraphs

Dataset: github.com/google-research-datasets/tpu_graphs

Competition: <u>kaggle.com/competitions/predict-ai-model-runtime</u>

Come learn more about the conclusion of the competition and the winning strategies at **ML for Systems Workshop @ NeurIPS**

